Skip to main content
Log in

Experimental study on particle circulation characteristics of external circulating fluidized bed evaporator

  • Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In order to solve the particle circulation problem of external circulation fluidized bed evaporator, a new particle circulation device was developed, and a cold experiment device was set up for reference to the principle of gassolid circulating fluidized bed U-loop seal valve. The adjustment characteristics of the particle circulation device were studied experimentally. The effects of different flow combinations on pressure drop, particle circulation rate and particle volume fraction of heat exchange tube were investigated when the main flow and any auxiliary flow of the sealing valve were combined. It was found that when the main flow rate is constant, the pressure drop of the heat exchange tube increases with the increase of the auxiliary flow rate, and the pressure drop trend is stable when the main flow and loose flow are combined. The flow rate of particle circulation can be adjusted by adjusting the flow rate of any auxiliary flow alone, and fluidized flow has the strongest ability to regulate the particle circulation rate. The amplitude of the power spectral density of the pressure differential fluctuation signal is related to the particle circulation rate and volume fraction, so the flow state in the pipe can be studied by this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Wen, H. Zhou and X. L. Li, Chem. Eng. Process., 43, 49 (2004).

    Article  CAS  Google Scholar 

  2. Y. P. Wang, J. J. Liu, C. X. Wu and L. Zhu, J. Chem. Ind. Eng., 57, 31 (2006).

    CAS  Google Scholar 

  3. M. Y. Liu, H. Wang and R. T. Lin, Chem. Eng. Sci., 61, 802 (2006).

    Article  CAS  Google Scholar 

  4. P. Pronk, C. A. Infante Ferreira and G. J. Witkamp, Int. J. Heat Mass Transfer, 52, 3857 (2009).

    Article  CAS  Google Scholar 

  5. L. Donghyun, M. Arturo and R. John, Chem. Eng. Sci., 56, 6031 (2001).

    Article  Google Scholar 

  6. W. G. Liang and S. L. Zhang, Power Technol., 90, 95 (1997).

    Article  CAS  Google Scholar 

  7. P. Natarajan, R. Velraj and R. V. Seeniraj, Power Technol., 264, 166 (2014).

    Article  CAS  Google Scholar 

  8. F. Jiang, M. Y. Liu, X. L. Li and X. P. Tang, J. Chem. Eng. Chinese Universities, 18, 564 (2004).

    CAS  Google Scholar 

  9. M. Y. Liu and B. F. Sun, Res. Chem. Eng. Des., 85, 1225 (2007).

    Article  CAS  Google Scholar 

  10. A. Shaikh and Razzak, Int. J. Multiphase Flow, 113, 279 (2019).

    Article  Google Scholar 

  11. R. R. Palkar and V. Shilapuram, Particuology, 31, 59 (2017).

    Article  Google Scholar 

  12. J. P. Wen and X. Q. Jia, Chem. Eng. Commun., 192, 956 (2005).

    Article  CAS  Google Scholar 

  13. E. Grieco and L. Marmo, Power Technol., 161, 89 (2006).

    Article  CAS  Google Scholar 

  14. S. Y. Lv, F. Jiang, P. G. Qi, X. L. Chen and X. L. Li, Power Technol., 136, 375 (2020).

    Google Scholar 

  15. H. Schmidtke and K. Genthner, Chem. Ing. Technol., 62, 840 (1990).

    Article  CAS  Google Scholar 

  16. M. H. Maddahi, M. S. Hatamipour and M. Jamialahmadi, Int. J. Ther. Sci., 125, 11 (2018).

    Article  CAS  Google Scholar 

  17. D. G. Klaren, E. F. Boer and D. W. Sullivan, Heat Transfer Eng., 28, 216 (2007).

    Article  CAS  Google Scholar 

  18. S. A. Hashemi, A. Sadighian, S. I. A. Shah and R. S. Sanders, Int. J. Mul. Flow, 66, 46 (2014).

    Article  CAS  Google Scholar 

  19. J. M. Wei, Experimental Study on Circulating Character of Particles in liquid-Solid Circulating Fluidized Bed: [D], Tianjin: Hebei University of Technology (2007).

    Google Scholar 

  20. P. Basu and J. Buttler, Appl. Energy, 86, 1723 (2009).

    Article  CAS  Google Scholar 

  21. M. M. Yazdanpanah, A. Forret, T. Gauthier and A. Delebarre, Power Technol., 237, 266 (2013).

    Article  CAS  Google Scholar 

  22. C. J. Li, Z. Zou, H. Z. Li and Q. S. Zhu, Particuology, 36, 50 (2018).

    Article  CAS  Google Scholar 

  23. P. Basu and J. Butler, Appl. Energy, 86, 1723 (2009).

    Article  CAS  Google Scholar 

  24. P. Bareschino, R. Solimene, R. Chirone and P. Salatino, Power Technol., 264, 197 (2014).

    Article  CAS  Google Scholar 

  25. C. J. Bandara, C. Jayarathna, R. Thapa, H. K. Nielsen, B. M. E. Moldestad and M. S. Eikeland, Chem. Eng. Sci., 227, 1 (2020).

    Article  Google Scholar 

  26. H. G. Wang, Y. Li, G. Z. Qiu, G. L. Song and W. Q. Yang, Power Technol., 266, 249 (2014).

    Article  CAS  Google Scholar 

  27. P. Basu and L. Cheng, Chem. Eng. Res. Des., 78, 991 (2000).

    Article  CAS  Google Scholar 

  28. A. Chinsuwan and J. Somjun, Chem. Eng. Res. Des., 163, 58 (2020).

    Article  CAS  Google Scholar 

  29. W. H. Zhang and X. G. Li, Chem. Eng. Sci., 64, 1009 (2009).

    Article  CAS  Google Scholar 

  30. A. Chinsuwan, Int. J. Heat Mass Transfer, 177, 121 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, Z., Tang, M. et al. Experimental study on particle circulation characteristics of external circulating fluidized bed evaporator. Korean J. Chem. Eng. 39, 241–250 (2022). https://doi.org/10.1007/s11814-021-0951-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0951-9

Keywords

Navigation