Skip to main content

Advertisement

Log in

Cost and robustness analysis of the Korean government’s renewable energy plan under varying scenarios

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In the ongoing global warming era, increasing the share of renewable energy systems (RES) in the energy portfolio has been a goal for many governments around the world. South Korea is not an exception and has employed numerous policy measures to promote adoption of RES. The latest renewable energy plan is one of those measures in which the target shares of RES are set for the coming decade. This study proposes a revised, more comprehensive mathematical model for assessing the total costs associated with installment, operation, and disintegration of RES. The proposed model is applied to examine the Korean government’s latest plan in terms of the four major RES: solar PV, wind power, biomass energy, and fuel cell power. Sensitivity analysis was conducted to evaluate robustness of the plan with respect to changes in the price of fuels and CO2 emission. The results illustrate the contribution of various types of costs for implementing the plan and provide insight on numerous issues, including key areas of research for minimizing the costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BAU:

business as usual

EIA:

energy information administration

GW:

gigawatt

IEA:

international energy agency

kWh:

kilowatt hour(s)

LCEO:

levelized cost of energy

LR:

learning rate

MW:

megawatt

PV:

photovoltaics

RES:

renewable energy system

α i :

learning effect for the capital, fixed, and stripping cost of renewable energy system i

β i :

learning effect for the intermittence cost of renewable energy system i

Ci,t :

cumulative capacity of renewable energy system i in year t

CCi :

capital cost of renewable energy system i

CIi :

unit intermittence cost of renewable energy system i

d:

discount rate

ECi :

external cost of renewable energy system i

FCi :

fixed cost of renewable energy system i

Ii,t :

capacity of renewable energy system i installed in year t

ICi :

intermittence cost of renewable energy system i

KCi :

unit capital cost of renewable energy system i

KFi :

unit fixed cost of renewable energy system i

lti :

lifetime of renewable energy system i

PCt :

price of CO2 emission allowance during year t

PFi,t :

price of fuel for renewable energy system i in year t

PPi :

unit environmental cost excluding that due to CO2 emission for renewable energy system i

PRi :

unit disintegration cost for renewable energy system i

SCi :

Stripping cost of renewable energy system i

t:

time [year]

τ i,t :

capacity factor of renewable energy system i during year t

TCi :

total cost of renewable energy system i

VCi :

variable cost of renewable energy system i

References

  1. D. Son, J. Kim and B. Jeong, Energies, 12, 1667 (2019).

    Article  Google Scholar 

  2. Y. Ha, J. Byrne, H.-S. Lee, Y.-J. Lee and D.-H. Kim, WIREs Energy Environ., 9, 1 (2020).

    Article  CAS  Google Scholar 

  3. C. Lee and S. Huh, Renew. Sustain. Energy Rev., 69, 207 (2017).

    Article  Google Scholar 

  4. S. Huh and C. Lee, Energy Policy, 69, 248 (2014).

    Article  Google Scholar 

  5. R. Turconi, C. O. Dwyer, D. Flynn and T. Astrup, Appl. Energy, 131, 1 (2014).

    Article  CAS  Google Scholar 

  6. A. Allouhi, R. Saadani, M. S. Buker, T. Kousksou, A. Jamil and M. Rahmoune, Sol. Energy, 178, 25 (2019).

    Article  CAS  Google Scholar 

  7. C. Breyer, A. Gerlach, J. Mueller, H. Behacker and A. Milner, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC) (2009).

  8. J. Koo, K. Park, D. Shin and E. S. Yoon, Appl. Energy, 88, 2254 (2011).

    Article  Google Scholar 

  9. M. A. Green, N. Kopidakis, E. D. Dunlop and A. W. Y. H. Baillie, Prog. Photovoltaics, 2, 3 (2020).

    Article  Google Scholar 

  10. M. A. Green, Prog. Photovoltaics, 17, 183 (2009).

    Article  CAS  Google Scholar 

  11. Y. Liang, B. Yu and L. Wang, Renew. Energy, 131, 700 (2019).

    Article  Google Scholar 

  12. A. N. Arnette, Renew. Sustain. Energy Rev., 70, 254 (2017).

    Article  CAS  Google Scholar 

  13. C. D. Yue, C. S. Chen and Y. C. Lee, Renew. Energy, 86, 930 (2016).

    Article  Google Scholar 

  14. W. Deason, Renew. Sustain. Energy Rev., 82, 3168 (2018).

    Article  Google Scholar 

  15. G. Notton, M. Nivet, C. Voyant, C. Paoli, C. Darras, F. Motte and A. Fouilloy, Renew. Sustain. Energy Rev., 87, 96 (2018).

    Article  Google Scholar 

  16. J. Batalla-bejerano and E. Trujillo-baute, Energy Policy, 94, 411 (2016).

    Article  Google Scholar 

  17. R. Golecha and J. Gan, Renew. Sustain. Energy Rev., 57, 34 (2016).

    Article  Google Scholar 

  18. C. L. Williams, T. L. Westover, R. M. Emerson, J. S. Tumuluru and C. Li, Bioenergy Res., 9, 1 (2016).

    Article  CAS  Google Scholar 

  19. J. Koo, K. Han and E. S. Yoon, Renew. Sustain. Energy Rev., 15, 665 (2011).

    Article  Google Scholar 

  20. B. Kim, J. Kang, S. Park, J. Jang and J. H. Hong, New Renew. Energy, 15, 36 (2019).

    Article  Google Scholar 

  21. X. Ouyang and B. Lin, Energy Policy, 70, 64 (2014).

    Article  Google Scholar 

  22. M. J. Kaiser and B. Snyder, Mar. Policy, 36, 153 (2012).

    Article  Google Scholar 

  23. H. Kim, Y. Kang and C. K. Kim, J. Wind Power, 8, 21 (2017).

    Google Scholar 

  24. H. K. Kang, K. C. Park and L. H. Kim, Korean Soc. Energy, 23, 7 (2014).

    Google Scholar 

  25. J. Kim and T. J. Lee, 2019 Annual Meeting of Korea Society of Energy & Climate Change, 33 (Korea Society of Energy&Climate Change, 2019).

  26. P. Sinha, M. de Wild-Scholten, A. Wade and C. Breyer, 28th European Photovoltaic Solar Energy Conference and Exhibition, 4583 (2013).

  27. Hourly power generation by the solar PV unit 1. South Korean Government Public Data (2020). Available at: https://www.data.go.kr/data/15050345/fileData.do.

  28. Hourly power generation by the wind power unit 1. South Korean Government Public Data (2020). Available at: https://www.data.go.kr/data/15043275/fileData.do.

  29. C. Parrado, A. Girard, F. Simon and E. Fuentealba, Energy, 94, 422 (2016).

    Article  Google Scholar 

  30. L. Meng, J. You and Y. Yang, Nat. Commun., 9, 5265 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E. Williams, E. Hittinger, R. Carvalho and R. Williams, Energy Policy, 106, 427 (2017).

    Article  Google Scholar 

  32. G. D. Lee, M. D. Park, Y. J. Cheong, H. C. Shin and J. H. Yang, A study on the calculation of LCOEs for various energy technologies, Korean Power Exchange, Seoul (2018).

    Google Scholar 

  33. L. Ziegler, E. Gonzalez, T. Rubert, U. Smolka and J. J. Melero, Renew. Sustain. Energy Rev., 82, 1261 (2018).

    Article  Google Scholar 

  34. International Energy Agency, International Energy Outlook 2019 (2019).

  35. M. Wei, S. J. Smith and M. D. Sohn, Appl. Energy, 191, 346 (2017).

    Article  Google Scholar 

  36. J. H. Kim, An Empirical Analysis of Fuel Cell Generation Operation, Soongsil University (2019).

  37. J. R. Park, Statistics on the wood pellet, Korean Forest Service, Daejeon (2018).

    Google Scholar 

  38. Import prices of natural gas. Korea Energy Statistical Information System (2020). Available at: http://www.kesis.net/main/main.jsp.

  39. S. Schjolset, The MSR: Impact on market balance and prices, Thomson Reuters, Toronto (2014).

    Google Scholar 

  40. Braun, M. Environmental External Costs from Power Generation by Renewable Energies, Universität Stuttgart (2004).

  41. V. Nian, Q. Sun and H. Li, Energy Procedia, 104, 556 (2016).

    Article  Google Scholar 

  42. I. Staffell, A. Ingram and K. Kendall, Int. J. Hydrogen Energy, 37, 2509 (2011).

    Article  Google Scholar 

  43. D. Thrän, K. Schaubach, D. Peetz, M. Junginger, T. Mai-Maulin, F. Schipfer, O. Olsson and P. Lamers, Biofuels, Bioprod. Biorefining, 13, 267 (2019).

    Article  Google Scholar 

  44. Y. Huang, X. Dai, Q. Wang and D. Zhou, Appl. Energy, 285, 116485 (2021).

    Article  Google Scholar 

  45. M. Odenberger, L. Reichenberg, V. Johansson, L. Thorson, J. Goop, L. Goransson, M. Taljegard and F. Johnsson, Energy, 126, 352 (2017).

    Article  Google Scholar 

  46. A. K. Pandey, M. S. Hossain, V. V. Tyagi, N. A. Rahim, J. A. L. Selvaraj and S. Ahmet, Renew. Sustain. Energy Rev., 82, 281 (2018).

    Article  Google Scholar 

  47. T. Boukherroub, L. Lebel and S. Lemieux, Appl. Energy, 198, 385 (2017).

    Article  Google Scholar 

  48. L. Kumar, A. A. Koukoulas, S. Mani and J. Satyavolu, Energy Fuels, 31, 37 (2017).

    Article  CAS  Google Scholar 

  49. L. Duclos, M. Lupsea, G. Mandil, L. Svecova, P.-X. Thivel and V. Laforest, J. Clean. Prod., 142, 2618 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by 2020 Hongik University Research Fund, and the National Research Foundation of Korea (NRF-2019 R1C1C1002642).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamin Koo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, N., Kim, W., Lee, D. et al. Cost and robustness analysis of the Korean government’s renewable energy plan under varying scenarios. Korean J. Chem. Eng. 38, 2397–2405 (2021). https://doi.org/10.1007/s11814-021-0883-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0883-4

Keywords

Navigation