Skip to main content
Log in

The role of contact time and input amount of 1,1,1,2-tetrafluoroethane (HFC-134a) on the catalyst lifetime and product selectivity in catalytic pyrolysis

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

During catalytic pyrolysis of HFC-134a over γ-alumina, the formation of HF and coke causes catalyst deactivation. Catalyst deactivation and product selectivity depend on the contact time during catalytic pyrolysis of HFC-134a as reported in this paper. γ-Alumina calcined at 650 oC was used as the catalyst due to its higher quantity of acidic sites and larger surface area, which are crucial for catalytic pyrolysis. X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS), and thermogravimetric analysis (TGA) of the catalysts were performed to determine the influence of contact time and flow rate of HFC-134a. 2 mL/min of HFC-134a balanced with nitrogen to 25, 50, 100, and 200 mL/min total flow rates was studied at 600 °C. 200 mL/min showed a 9.4 h catalyst lifetime with a small number of by-products. Shorter contact time between HFC-134a and HF with the catalyst was found to be the key to the longer lifetime of the catalyst. The catalyst lifetime was decreased with an increase in the HFC-134a input amount. Among 2, 4, and 6 mL/min input of HFC-134a, 2 mL/min showed the longest catalytic activity followed by 4 and 6 mL/min, respectively. Conversion of γ-alumina into AlF3 and deposition of coke were responsible for the deactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Wuebbles, D. R. Easterling, K. Hayhoe, T. Knutson, R. E. Kopp, J. P. Kossin, K. E. Kunkel, A. N. LeGran-de, C. Mears, W. V. Sweet, P. C. Taylor, R. S. Vose and M. F. Wehner, 2017: Our globally changing climate. In: Climate Science Special Report: Fourth National Climate Assessment, Volume I [Wuebbles, D. J., D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart and T. K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, pp. 35–72.

    Google Scholar 

  2. J. Srinivasan, Resonance, 13(12), 1146 (2008).

    Article  CAS  Google Scholar 

  3. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

  4. https://ec.europa.eu/clima/policies/strategies/progress/kyoto_2_en (accessed Sep. 21, 2020).

  5. G. J. M. Velders, A. R. Ravishankara, M. K. Miller, M. J. Molina, J. Alcamo, J. S. Daniel, D. W. Fahey, S. A. Montzka and S. Reimann, Science, 335(6071), 922 (2012).

    Article  CAS  Google Scholar 

  6. M. J. Molina and F. S. Rowland, Nature, 249, 810 (1974).

    Article  CAS  Google Scholar 

  7. https://ozone.unep.org/treaties/montreal-protocol (accessed Oct. 07, 2020).

  8. G. Myhre, D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  9. https://eia-international.org/wp-content/uploads/EIA-Kigali-Amendment-to-the-Montreal-Protocol-FINAL.pdf (accessed Oct. 28, 2020).

  10. UNFCCC, CDM Methodology Booklet, 2019.

  11. M. Shin, D. Jang, Y. Lee, Y. Kim and E. Kim, J. Mater. Cycles Waste Manag., 19(2), 754 (2017).

    Article  CAS  Google Scholar 

  12. W. Han, Y. Li, H. Tang and H. Liu, J. Fluorine Chem., 140, 7 (2012).

    Article  CAS  Google Scholar 

  13. M. Ohno, Y. Ozawa and T. Ono, Int. J. Plasma Environ. Sci. Technol., 1(2), 159 (2007).

    Google Scholar 

  14. M. S. Gandhi and Y. S. Mok, Int. J. Environ. Sci. Technol., 12(2), 499 (2013).

    Article  Google Scholar 

  15. Y. F. Wang, W. J. Lee, C. Y. Chen and L. Te Hsieh, Ind. Eng. Chem. Res., 38(9), 3199 (1999).

    Article  CAS  Google Scholar 

  16. Y. Takita, T. Tanabe, M. Ito, M. Ogura, T. Muraya, S. Yasuda, H. Nishiguchi and T. Ishihara, Ind. Eng. Chem. Res., 41(11), 2585 (2002).

    Article  CAS  Google Scholar 

  17. Z. M. El-Bahy, R. Ohnishi and M. Ichikawa, Appl. Catal. B Environ., 40(2), 81 (2003).

    Article  CAS  Google Scholar 

  18. A. Iizuka, H. Ishizaki, A. Mizukoshi, M. Noguchi, A. Yamasaki and Y. Yanagisawa, Ind. Eng. Chem. Res., 50(21), 11808 (2011).

    Article  CAS  Google Scholar 

  19. T. U. Han, B. Yoo, Y. Kim, B. Hwang, G. L. Sudibiya, Y. Park and S. Kim, Korean J. Chem. Eng., 35(8), 1611 (2018).

    Article  CAS  Google Scholar 

  20. X. F. Xu, J. Y. Jeon, M. H. Choi, H. Y. Kim, W. C. Choi and Y. K. Park, J. Mol. Catal. A Chem., 266(1–2), 131 (2007).

    Article  CAS  Google Scholar 

  21. W. Han, Y. Chen, B. Jin, H. Liu and H. Yu, Greenh. Gases Sci. Technol., 4(1), 121 (2014).

    Article  CAS  Google Scholar 

  22. J. Song, S. Chung, M. Kim, Y. Lee, K. Lee and J. Kim, J. Mol. Catal. A Chem., 370, 50 (2013).

    Article  CAS  Google Scholar 

  23. W. Jia, M. Liu, X. Lang, C. Hu, J. Li and Z. Zhu, Catal. Sci. Technol., 5(6), 3103 (2015).

    Article  CAS  Google Scholar 

  24. C. M. A. Swamidos, M. Sheraz, A. Anus, S. J. Jeong, Y. Park, Y. Kim and S. Kim, Catalysts, 9(3), 270 (2019).

    Article  Google Scholar 

  25. W. Jia, Q. Wu, X. Lang, C. Hu, G. Zhao, J. Li and Z. Zhu, Catal. Lett., 145(2), 654 (2015).

    Article  CAS  Google Scholar 

  26. J. Ryu, K. No, Y. Kim, E. Park and S. Hong, Sci. Rep., 6, 36176 (2016).

    Article  CAS  Google Scholar 

  27. Y. Higashi, N. Sakoda, M. A. Islam, Y. Takata, S. Koyama and R. Akasaka, J. Chem. Eng. Data, 63(2), 417 (2018).

    Article  CAS  Google Scholar 

  28. N. Yaghobi, J. King Saud Univ. — Eng. Sci., 25(1), 1 (2013).

    Article  Google Scholar 

  29. K. Açikalin, F. Karaca and E. Bolat, Fuel, 95, 169 (2012).

    Article  Google Scholar 

  30. H. Yang, R. Coolman, P. Karanjkar, H. Wang, P. Dornath, H. Chen, W. Fan, W. C. Conner, T. J. Mountziaris, and G. Huber, Green Chem., 19(1), 286 (2017).

    Article  CAS  Google Scholar 

  31. H. Y. Li, Y. J. Yan and Z. W. Ren, J. Fuel Chem. Technol., 36(6), 666 (2008).

    Article  CAS  Google Scholar 

  32. A. Aho, A. Tokarev, P. Backman, N. Kumar, K. Eränen, M. Hupa, B. Holmbom, T. Salmi and D. Y. Murzin, Top. Catal., 54, 941 (2011).

    Article  CAS  Google Scholar 

  33. E. Pütün, Energy, 35(7), 2761 (2010).

    Article  Google Scholar 

  34. S. J. Jeong, G. L. Sudibya, J. Jeon, Y. Kim, C. M. A. Swamidoss and S. Kim, Catalysts, 9(11), 901 (2019).

    Article  CAS  Google Scholar 

  35. W. J. Tseng and P. S. Chao, Ceram. Int., 39, 3779 (2013).

    Article  CAS  Google Scholar 

  36. R. A. Spurr and H. Myers, Anal. Chem., 29, 760 (1957).

    Article  CAS  Google Scholar 

  37. J. Y. Jeon, X.-F. Xu, M. H. Choi, H. Y. Kim and Y.-K. Park, Chem. Commun., 3, 1244 (2003).

    Article  Google Scholar 

  38. T. Krahl and E. Kemnitz, Catal. Sci. Technol., 7(4), 773 (2017).

    Article  CAS  Google Scholar 

  39. Z. Xi, X. Liu, J. Li, J. Yuan, W. Jia, X. Liu, M. Liu and Z. Zhu, ChemistrySelect, 4(15), 4506 (2019).

    Article  CAS  Google Scholar 

  40. M. Kim, Y. Kim, J. Youn, I. Choi, K. Hwang, S. G. Kim, Y. Park, S. Moon, K. B. Lee and S. Jeon, Catalysts, 10(7), 766 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by a grant (20UGCP-B157945-01) from the Urban-based complex plant demonstration study utilizing underground space program funded by the Ministry of Land, Infrastructure, and Transport, Republic of Korea, and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number) (NRF-2019R1A6A3A01096378).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungdo Kim.

Ethics declarations

The authors declare no conflict of interest.

Supporting Information

11814_2021_776_MOESM1_ESM.pdf

The role of contact time and input amount of 1,1,1,2-tetrafluoroethane (HFC-134a) on the catalyst lifetime and product selectivity in catalytic pyrolysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anus, A., Sheraz, M., Jeong, S. et al. The role of contact time and input amount of 1,1,1,2-tetrafluoroethane (HFC-134a) on the catalyst lifetime and product selectivity in catalytic pyrolysis. Korean J. Chem. Eng. 38, 1240–1247 (2021). https://doi.org/10.1007/s11814-021-0776-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0776-6

Keywords

Navigation