Skip to main content
Log in

Phenol-acclimated activated sludge and Ralstonia eutropha in a microbial fuel Cell for removal of olive oil from mill wastewater

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The fuel acclimation process offers flexibility in microbial fuel cell (MFC) power generation behavior. Different concentrations (50–200 mg/L) of phenol were used for adapting the activated sludge (AS), obtained from a local petroleum wastewater treatment plant and Ralstonia eutropha pure culture. Anodic biomass capable of oxidizing phenol substrate, using either AS inoculum microbial consortium or R. eutropha in the MFC system, has been a reflection of growth supportive functionality of phenol and 150 mg/L as initial concentration was used in the experiments. For both types of inocula. The results of phenol and COD removals obtained for closed system configuration were compared with those under open circuit condition. The current production by AS and R. eutropha was improved through phenol acclimation process. The highest power density (PD) using either AS or R. eutropha was 11 and 5.8 mW/m2, respectively. In terms of using olive oil mill wastewater as the anodic substrate, the behavior of phenol-acclimated R. eutropha was better than that of the synthetic type of wastewater, and the PD value was 7.8 mW/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Rittmann, C. I. Torres and A. K. Marcus, Emerging environmental technologies, V. Shah, Springer, New York (2008).

    Google Scholar 

  2. B. D. Shoener, I. M. Bradley, R. D. Cusicka and J. S. Guest, Environ. Sci. Processes Impacts, 16, 1204 (2014).

    Article  CAS  Google Scholar 

  3. P. Arroyo and M. Molinos-Senante, Sci. Total Environ., 625, 819 (2018).

    Article  CAS  Google Scholar 

  4. J. Cheng, X. Zhu, J. Ni and A. Borthwick, Bioresour. Technol., 101, 2729 (2010).

    Article  CAS  Google Scholar 

  5. D. W. Small, D. V. Matyushov and G. A. Voth, J. Am. Chem. Soc., 125(24), 7470 (2003).

    Article  CAS  Google Scholar 

  6. J. M. Mayer and I. J. Rhile, Biochim. Biophys. Acta, 1655, 51 (2004).

    Article  CAS  Google Scholar 

  7. T. P. Silverstein, J. Chem. Educ., 89, 1159 (2012).

    Article  CAS  Google Scholar 

  8. R. Karthikeyan, B. Wang, J. Xuan, J. W. C. Wong, P. K. H. Lee and M. K. H. Leung, Electrochim. Acta, 157, 314 (2015).

    Article  CAS  Google Scholar 

  9. J. M. Sonawane, A. Yadav, P. C. Ghosh and S. B. Adeloju, Biosens. Bioelectron., 90, 558 (2017).

    Article  CAS  Google Scholar 

  10. Z. He and L. T. Angenent, Bioelectronics, 18, 2009 (2006).

    CAS  Google Scholar 

  11. D. Ucar, Y. Zhang and I. Angelidaki, Front. Microbiol., 8, 643 (2017).

    Article  Google Scholar 

  12. J. M. Pisciotta, Z. Zaybak, D. F. Call, J. Y. Nam and B. E. Logan, Appl. Environ. Microbiol., 78, 5212 (2012).

    Article  CAS  Google Scholar 

  13. D. K. Amenorfenyo, X. Huang, Y. Zhang, Q. Zeng, N. Zhang, J. Ren and Q. Huang, Int. J. Environ. Res. Public Health, 16, 1910 (2019).

    Article  CAS  Google Scholar 

  14. N. V. Pradeep, S. Anupama, K. Navya, H. N. Shalini, M. Idris and U. S. Hampannavar, Appl. Water Sci., 5, 105 (2015).

    Article  CAS  Google Scholar 

  15. N. M. R. Shchegolkova, G. S. Krasnov, A. A. Belova, A. A. Dmitriev, S. L. Kharitonov, K. M. Klimina, N. V. Molnikova and A. V. Kudryavtseva, Front. Microbol., 7(FEB) (2016).

  16. M. Tian, D. Du, W. Zhou, X. Zeng and G. Cheng, Braz. J. Microbiol., 48, 305 (2017).

    Article  CAS  Google Scholar 

  17. B. Maestro and J. M. Sanz, Microb. Biotechnol., 10(6), 1323 (2017).

    Article  CAS  Google Scholar 

  18. H. Bermek, T. Catal, S. S. Akan, M. S. Ulutaş, M. Kumru, M. Özgüven, H. Liu, B. Özçelik and A. T. Akarsubaşı, World J. Microbiol. Biotechnol., 30, 1177 (2014).

    Article  CAS  Google Scholar 

  19. M. Ahmadi, F. Vahabzadeh, B. Bonakdarpour, E. Mofarrah and M. Mehranian, J. Hazard. Mater. B, 123, 187 (2005).

    Article  CAS  Google Scholar 

  20. E. Jalilnejad, A. Mogharei and F. Vahabzadeh, Environ. Technol., 32, 1085 (2011).

    Article  CAS  Google Scholar 

  21. https://science.ut.ac.ir/web/biology/microbiology.

  22. S. V. Mohan, R. Saravanan, S. V. Raghavulu, G. Mohanakrishna and P. N. Sarma, Bioresour. Technol., 99, 596 (2008).

    Article  Google Scholar 

  23. J. D. Box, Water Res., 17, 511 (1983).

    Article  CAS  Google Scholar 

  24. A. K. Ghattas, F. Fischer, A. Wick and T. A. Ternes, Water Res., 116, 268 (2017).

    Article  CAS  Google Scholar 

  25. D. R. Bond and D. R. Lovley, Appl. Environ. Microbiol., 69, 1548 (2003).

    Article  CAS  Google Scholar 

  26. N. S. Malvankar, M. T. Tuominen and D. R. Lovely, Energy Environ. Sci., 5, 5790 (2011).

    Article  Google Scholar 

  27. E. Elakkiya and M. Matheswaran, Bioresour. Technol., 136, 407 (2013).

    Article  CAS  Google Scholar 

  28. K. P. Katuri, K. Scotta, I. M. Head, C. Picioreanu and T. P. Curtis, Bioresour. Technol., 102, 2758 (2011).

    Article  CAS  Google Scholar 

  29. K. Rabaey, N. Boon, S. D. Siciliano and M. Verhaege, Appl. Environ. Microbiol., 70, 5373 (2004).

    Article  CAS  Google Scholar 

  30. B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete and K. Rabaey, Environ. Sci. Technol., 40, 5181 (2006).

    Article  CAS  Google Scholar 

  31. S. Wu, W. He, W. Yang, Y. Ye, X. Huang and B. E. Logan, J. Power Sources, 356, 348 (2017).

    Article  CAS  Google Scholar 

  32. T. Miranda, A. Esteban, S. Rojas, I. Montero and A. Ruiz, Int. J. Mol. Sci., 9, 512 (2008).

    Article  CAS  Google Scholar 

  33. T. P. Sciarria, A. Tenca, A. D’Epifanio, B. Mecheri, G. Merlino, M. Barbato, S. Borin, S. Licoccia, V. Garavaglia and F. Adani, Bioresour. Technol., 147, 246 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Vahabzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, M., Daneshvar, R., Mogharei, A. et al. Phenol-acclimated activated sludge and Ralstonia eutropha in a microbial fuel Cell for removal of olive oil from mill wastewater. Korean J. Chem. Eng. 37, 1233–1240 (2020). https://doi.org/10.1007/s11814-020-0538-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0538-x

Keywords

Navigation