Skip to main content
Log in

Alum sludge conditioning with ferrous iron/peroxymonosulfate oxidation: Characterization and mechanism

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Alum sludge produced by drinking water plants needs to be conditioned and dewatered before final disposal. In this study, a novel ferrous iron/peroxymonosulfate (PMS) oxidation process was employed to enhance alum sludge dewaterability The effect of oxidative sulfate radicals generated by Fe2+ activated HSO5 on alum sludge was studied. The results showed that the optimal conditioning conditions for addition of Fe2+ and PMS were 0.5 g/g and 0.1 g/g TSS, respectively. Meanwhile, the capillary suction time (CST) and specific resistance to filtration (SRF) of alum sludge was reduced by 66% and 88%. Also found was that the absolute value of the zeta potential increased and the particle size decreased in alum sludge after Fe2+-PMS conditioning, which indicated that oxidative sulfate radicals destroyed the floc structure of alum sludge and smaller particles were generated. At the same time, the water contained in sludge flocs was released and enhanced sludge dewaterability, while leaching of aluminum ions also characterized decomposition of alum sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-G. Sveegaard, K. Keiding and M.-L. Christensen, Water Res., 46, 4999 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. E. Neyens, J. Baeyens and M. Weemaes, Environ. Eng. Sci., 1, 27 (2002).

    Article  Google Scholar 

  3. U. Kepp, I. Machenbach, N. Weisz and O.-E. Solheim, Water Sci. Technol., 42, 89 (2000).

    Article  CAS  Google Scholar 

  4. Q. Wang, K. Fujisaki, Y. Ohsumi and H.-I. Ogawa, J. Environ. Sci. Heal A, 36, 1361 (2001).

    Article  CAS  Google Scholar 

  5. W.-T. Hung, I.-L. Chang, W.-W. Lin and D.-J. Lee, Environ. Sci. Technol., 30, 2391 (1996).

    Article  CAS  Google Scholar 

  6. S. Deneux-Mustin, B.-S. Lartiges, G. Villemin, F. Thomas, J. Yvon, J.-L. Bersillon and D. Snidaro, Water Res., 35, 3018 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. M. Ma and S. Zhu, Colloid. Polym. Sci., 2-3, 123 (1999).

    Article  Google Scholar 

  8. E. Neyens, J. Baeyens and C. Creemers, J. Hazard. Mater., 97, 295 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. A. Erdincler and P.-A. Vesilind, Water Sci. Technol., 42, 119 (2000).

    Article  CAS  Google Scholar 

  10. B.-Q. Liao, D.-G. Allen, G.-G. Leppard, I.-G. Droppo and S.-N. Liss, J. Colloid Inter face Sci., 249, 372 (2002).

    Article  CAS  Google Scholar 

  11. C.-S. Liu, K. Shih, C.-X. Sun and F. Wang, Sci. Total Environ., 416, 507 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. E. Neyens and J. Baeyens, J. Hazard. Mater., 98, 33 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. E. Neyens, J. Baeyens, R. Dewil and B. De Heyder, J. Hazard. Mater., 106, 83 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. N. Buyukkamaci, Process Biochem., 39, 1503 (2004).

    Article  CAS  Google Scholar 

  15. M.-C. Lu, C.-J. Lin, C.-H. Liao, W.-P. Ting and R.-Y. Huang, Water Sci. Technol., 44, 327 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. W. Ren, Z. Zhou, Y. Zhu, L. Jiang, H. Wei, T. Niu, P. Fu and Z. Qiu, Int. Biodeterior. Biodegrad., 104, 384 (2015).

    Article  CAS  Google Scholar 

  17. X.-G. Gu, S.-G. Lu, Z.-F. Qiu, Q. Sui, Z.-W. Miao, K.-F. Lin, Y.-D. Liu and Q.-S. Luo, Ind. Eng. Chem. Res., 51, 7196 (2012).

    Article  CAS  Google Scholar 

  18. S.-Y. Yang, P. Wang, X. Yang, L. Shan, W.-Y. Zhang, X.-T. Shao and R. Niu, J. Hazard. Mater., 179, 552 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. J.-Y. Fang and C. Shang, Environ. Sci. Technol., 46, 8976 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Y.-R. Wang and W. Chu, Water Res., 45, 3883 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Y.-R. Wang and W. Chu, Appl. Catal. B- Environ., 123, 151 (2012).

    Article  CAS  Google Scholar 

  22. G.-P. Anipsitakis and D.-D. Dionysiou, Environ. Sci. Technol., 38, 3705 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. C. Liang and M. Lai, Environ. Eng. Sci., 25, 1071 (2008).

    Article  CAS  Google Scholar 

  24. Z.-Y. Yu, W.-H. Wang, L. Song, L.-Q. Lu, Z.-Y. Wang, X.-F. Jiang, C.-N. Dong and R.-Y. Qiu, Chem. Eng. J., 234, 475 (2013).

    Article  CAS  Google Scholar 

  25. M. Pagano, A. Volpe, G. Mascolo, A. Lopez, V. Locaputo and R. Ciannarella, Chemosphere, 86, 329 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. E. Neyens, J. Baeyens, M. Weemaes and B.-D. Heyder, J. Hazard. Mater., 98, 91 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. M. Meier, R. Vaneldik, I.-J. Chang, G.-A. Mines, D.-S. Wuttke, J.-R. Winkler and H.-B. Gray, J. Am. Chem. Soc., 116, 1577 (1994).

    Article  CAS  Google Scholar 

  28. P. Mirabel, G.-A. Salmon, C. Vinckier and C. Zetzsch, Hetero geneous and liquid-p has e processes, Springer Science & Business Media (2012).

    Google Scholar 

  29. B.-C. Gilbert and J.-K. Stell, J. Chem. Soc., Perkin Trans. 2, 8, 1281 (1990).

    Article  Google Scholar 

  30. J. Kim, T.-Q. Zhang, W. Liu, P.-H. Du, J.-T. Dobson and C.-H. Huang, Environ. Sci. Technol., 53, 13312 (2019).

    Article  PubMed  CAS  Google Scholar 

  31. V. Lepentsiotis, J. Domagala, I. Grgic, R. van Eldik, J.-G. Muller and C.-J. Burrows, Inorg. Chem., 38, 3500 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Z.-M. Zhang, J.-O. Edwards and P.-H. Rieger, Inorg. Chim. Acta, 221, 25 (1994).

    Article  CAS  Google Scholar 

  33. C. Marsh, Z. Zhang and J.-O. Edwards, Aust. J. C hem., 43, 321 (1990).

    Article  CAS  Google Scholar 

  34. J. Liu, Q. Yang, D.-B. Wang, X.-M. Li, Y. Zhong, X. Li, Y.-C. Deng, L.-Q. Wang, K.-X. Yi and G.-M. Zeng, Biore sour. Technol., 206, 134 (2016).

    Article  CAS  Google Scholar 

  35. G.-Y. Zhen, X.-Q. Lu, Y.-C. Zhao, X.-L. Chai and D.-J. Niu, Biore- sour. Technol., 116, 259 (2012).

    Article  CAS  Google Scholar 

  36. E. Lombi, D.-P. Stevens and M.-J. McLaughlin, Environ. Pollut., 158, 2110 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. S.-K. Panda and H. Matsumoto, Bot. Rev., 73, 326 (2007).

    Article  Google Scholar 

  38. H. Xu, M.-M. Ding, K.-L. Shen, J.-F. Cui and W. Chen, Chemosphere, 173, 404 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. T. Okuda, W. Nishijima, M. Sugimoto, N. Saka, S. Nakai, K. Tanabe, J. Ito, K. Takenaka and M. Okada, Water Res., 60, 75 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Q.-L. Wang, Acs Sustain. Chem. Eng., 5, 9630 (2017).

    Article  CAS  Google Scholar 

  41. Q.-L. Wang, K. Song, X.-D. Hao, J. Wei, P.-J. Maite, M.-C.-M. van Loosdrecht and H.-J. Zhao, Chemosphere, 201, 25 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Q.-L. Wang, J. Sun, S.-T. Liu, L. Gao, X. Zhou, D.-B. Wang, K. Song and L.-D. Nghiem, Water Res., 162, 269 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. X. Zhou, H.-Y. Chen, S.-H. Gao, S.-F. Han, R.-J. Tu, W. Wei, C. Cai, P. Liu, W.-B. Jin and Q.-L. Wang, Korean J. Chem. Eng., 34, 2672 (2017).

    Article  CAS  Google Scholar 

  44. X. Zhou, W.-B. Jin, H.-Y. Chen, C. Chen, S.-F. Han, R.-J. Tu, W. Wei, S.-H. Gao, G.-J. Xie and Q.-L. Wang, Water Sci. Technol., 76, 2427 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. P.-A. Vesilind, J. Water Pollut. Contr. Fed., 60, 215 (1988).

    CAS  Google Scholar 

  46. G.-W. Chen, W.-W. Lin and D.-J. Lee, Water Sci. Technol., 34, 443 (1996).

    Article  CAS  Google Scholar 

  47. K.-B. Vesilind, J. Inst. Water Pollut. Contr., 3, 388 (1980).

    Google Scholar 

  48. M.-A. Tony, Y.-Q. Zhao and A.-M. Tayeb, J. Environ. Sci. — China, 21, 101 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. W.-K. Neubauer, J. Am. Water Works Ass, 60, 819 (1968).

    Article  CAS  Google Scholar 

  50. G.-P. Westerhoff and M.-P. Daly, J. Am. Water Works Ass, 66, 319 (1974).

    Article  CAS  Google Scholar 

  51. G.-P. Westerhoff and M.-P. Daly, J. Am. Water Works Ass, 66, 379 (1974).

    Article  Google Scholar 

  52. M. Abdo, K.-T. Ewida and Y.-M. Youssef, J. Environ. Sci. Heal A, 28, 1205 (1993).

    Google Scholar 

  53. X. Zhou, G.-M. Jiang, T.-T. Zhang, Q.-L. Wang, G.-J. Xie and Z.-G. Yuan, Bioresour. Technol., 192, 817 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Z. Yang, B. Gao and Q. Yue, Chem. Eng. J., 165, 122 (2010).

    Article  CAS  Google Scholar 

  55. I. Badr and M.-E. Meyerhoff, Anal. Chem., 77, 6719 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. R. Katal and H. Pahlavanzadeh, Desalination, 265, 199 (2011).

    Article  CAS  Google Scholar 

  57. X.-M. Liu, G.-P. Sheng, H.-W. Luo, F. Zhang, S.-J. Yuan, J. Xu, R.-J. Zeng, J.-G. Wu and H.-Q. Yu, Environ. Sci. Technol., 44, 4355 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. N. Wang, W.-J. Zhang, B.-D. Cao, P. Yang, F.-G. Cui and D.-S. Wang, Chem. Eng. J., 350, 660 (2018).

    Article  CAS  Google Scholar 

  59. H.-A. Elliott and B.-A. Dempsey, J. Am. Water Works Ass, 83, 126 (1991).

    Article  CAS  Google Scholar 

  60. X.-H. Guan, G.-H. Chen and C. Shang, Water Res., 39, 3433 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 51878215, 51576057 and 51676057), Natural Science Foundation of Guangdong Province, China (2018 A030313185) and Shenzhen Science and Technology Innovation Project (KJYY20171011144235970, JCYJ20170307150223308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Jin, W., Wang, L. et al. Alum sludge conditioning with ferrous iron/peroxymonosulfate oxidation: Characterization and mechanism. Korean J. Chem. Eng. 37, 663–669 (2020). https://doi.org/10.1007/s11814-019-0457-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0457-x

Keywords

Navigation