Skip to main content
Log in

Visible-to-UV triplet-triplet annihilation upconversion from a thermally activated delayed fluorescence/pyrene pair in an air-saturated solution

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Despite increasing use of triplet-triplet annihilation upconversion (TTA-UC) of low-energy visible light, the generation of ultraviolet (UV) photons by TTA remains challenging because of the difficulty in finding sensitizers and acceptors with suitable energy levels. Here, we report efficient, photostable visible-to-UV TTA-UC in an air-saturated solution using a new pair with suitable energy levels: a thermally activated delayed fluorescence (TADF) molecule and pyrene. 4CzIPN, which has extremely small energy difference ΔEST (0.083 eV), was used as the TADF sensitizer to promote effective triplet energy transfer to the acceptor. When oleic acid was used as an effective singlet oxygen receptor in an air-saturated solution, the 4CzIPN/pyrene pair exhibited bright upconverted emission at 370–430 nm under 445 nm laser excitation, but no noticeable upconverted emission was observed when 4CzIPN was paired with previously reported UV-emitting acceptors [2,5-diphenyloxazole (PPO), p-terphenyl, and p-quaterphenyl]. TTA was confirmed by the quadratic dependence of the upconverted emission intensity on the 445 nm laser power density. The maximum quantum yield of the upconverted emission from the 4CzIPN/pyrene pair was 0.66%, which is considerable when compared with that of a previously reported visible-to-UV TTA-UC system with a biacetyl/PPO pair (0.58%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

A:

absorbance

ΔEST :

energy difference between S1 and T1 states

I:

integrated fluorescence intensity

η :

refractive index of solvent

ϕ :

quantum yield

ϕ UC :

TTA-UC efficiency

References

  1. S. Sarina, E. R. Waclawik and H. Zhu, Green Chem., 15(7), 1814 (2013).

    Article  CAS  Google Scholar 

  2. S. G. Kumar and L. G. Devi, J. Phys. Chem. A, 115(46), 13211 (2011).

    Article  CAS  Google Scholar 

  3. J. Chen, S. Loeb and J.-H. Kim, Environ. Sci.: Water Res. Technol., 3(2), 188 (2017).

    CAS  Google Scholar 

  4. T. F. Schulze and T. W. Schmidt, Energy Environ. Sci., 8(1), 103 (2015).

    Article  CAS  Google Scholar 

  5. T. Trupke, M. A. Green and P. Würfel, J. Appl. Phys., 92(7), 4117 (2002).

    Article  CAS  Google Scholar 

  6. Y. Y. Cheng, B. Fückel, R. W. MacQueen, T. Khoury, R. G. C. R. Clady, T. F. Schulze, N. J. Ekins-Daukes, M. J. Crossley, B. Stannowski, K. Lips and T. W. Schmidt, Energy Environ. Sci., 5(5), 6953 (2012).

    Article  CAS  Google Scholar 

  7. G. Chen, J. Seo, C. Yang and P. N. Prasad, Chem. Soc. Rev., 42(21), 8304 (2013).

    Article  CAS  Google Scholar 

  8. V. Gray, D. Dzebo, M. Abrahamsson, B. Albinsson and K. Moth-Poulsen, Phys. Chem. Chem. Phys., 16(22), 10345 (2014).

    Article  CAS  Google Scholar 

  9. J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark and R. E. I. Schropp, Energy Environ. Sci., 4(12), 4835 (2011).

    Article  CAS  Google Scholar 

  10. J.-H. Kim, F. Deng, F. N. Castellano and J.-H. Kim, Chem. Mater., 24(12), 2250 (2012).

    Article  CAS  Google Scholar 

  11. Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley and T. W. Schmidt, J. Phys. Chem. Lett., 1(12), 1795 (2010).

    Article  CAS  Google Scholar 

  12. A. Monguzzi, R. Tubino, S. Hoseinkhani, M. Campione and F. Meinardi, Phys. Chem. Chem. Phys., 14(13), 4322 (2012).

    Article  CAS  Google Scholar 

  13. R. S. Khnayzer, J. Blumhoff, J. A. Harrington, A. Haefele, F. Deng and F. N. Castellano, Chem. Commun., 48(2), 209 (2012).

    Article  CAS  Google Scholar 

  14. J. Zhao, S. Ji and H. Guo, RSC Adv., 1(6), 937 (2011).

    Article  CAS  Google Scholar 

  15. F. N. Castellano and C. E. McCusker, Dalton Trans., 44, 17906 (2015).

    Article  CAS  Google Scholar 

  16. W. Wu, J. Zhao, J. Sun and S. Guo, J. Org. Chem., 77, 5305 (2012).

    Article  CAS  Google Scholar 

  17. W. Wu, X. Cui and J. Zhao, Chem. Commun., 49(79), 9009 (2013).

    Article  CAS  Google Scholar 

  18. J. Zhou, Q. Liu, W. Feng, Y. Sun and F. Li, Chem. Rev., 115(1), 395 (2015).

    Article  CAS  Google Scholar 

  19. S. Ji, W. Wu, W. Wu, H. Guo and J. Zhao, Angew. Chem. Int. Ed., 50, 1626 (2011).

    Article  CAS  Google Scholar 

  20. S. Guo, L. Xu, K. Xu, J. Zhao, B. Küçükoz, A. Karatay, H. G. Yaglioglu, M. Hayvali and A. Elmali, Chem. Sci., 6, 3724 (2015).

    Article  CAS  Google Scholar 

  21. T. N. Singh-Rachford and F. N. Castellano, J. Phys. Chem. A, 113(20), 5912 (2009).

    Article  CAS  Google Scholar 

  22. W. Zhao and F. N. Castellano, J. Phys. Chem. A, 110(40), 11440 (2006).

    Article  CAS  Google Scholar 

  23. T. C. Wu, D. N. Congreve and M. A. Baldo, Appl. Phys. Lett., 107(3), 031103 (2015).

    Article  Google Scholar 

  24. H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 492, 234 (2012).

    Article  CAS  Google Scholar 

  25. N. Yanai, M. Kozue, S. Amemori, R. Kabe, C. Adachi and N. Kimizuka, J. Mater. Chem. C, 4(27), 6447 (2016).

    Article  CAS  Google Scholar 

  26. B. S. Kim and J. Y. Lee, ACS Appl. Mater. Interfaces, 6(11), 8396 (2014).

    Article  CAS  Google Scholar 

  27. Q. Liu, M. Xu, T. Yang, B. Tian, X. Zhang and F. Li, ACS Appl. Mater. Interfaces, 10(12), 9883 (2018).

    Article  CAS  Google Scholar 

  28. V. Gray, P. Xia, Z. Huang, E. Moses, A. Fast, D. A. Fishman, V. I. Vullev, M. Abrahamsson, K. Moth-Poulsen and M. L. Tang, Chem. Sci., 8(8), 5488 (2017).

    Article  CAS  Google Scholar 

  29. A. Kretzschmar, C. Patze, S. T. Schwaebel and U. H. F. Bunz, J. Org. Chem., 80(18), 9126 (2015).

    Article  CAS  Google Scholar 

  30. T. N. Singh-Rachford and F. N. Castellano, Coord. Chem. Rev., 254(21), 2560 (2010).

    Article  CAS  Google Scholar 

  31. L. C. Ong, L. Y. Ang, S. Alonso and Y. Zhang Biomaterials, 35(9), 2987 (2014).

    Article  CAS  Google Scholar 

  32. N. Yanai and N. Kimizuka, Chem. Commun., 52(31), 5354 (2016).

    Article  CAS  Google Scholar 

  33. J.-H. Kim and J.-H. Kim, J. Am. Chem. Soc., 134(42), 17478 (2012).

    Article  CAS  Google Scholar 

  34. Q. Liu, B. Yin, T. Yang, Y. Yang, Z. Shen, P. Yao and F. Li, J. Am. Chem. Soc., 135(13), 5029 (2013).

    Article  CAS  Google Scholar 

  35. S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen and P. J. Schuck, Proc. Natl. Acad. Sci. USA, 106(27), 10917 (2009).

    Article  CAS  Google Scholar 

  36. J. Peng, X. Guo, X. Jiang, D. Zhao and Y. Ma, Chem. Sci., 7(2), 1233 (2016).

    Article  CAS  Google Scholar 

  37. C. Li, C. Koenigsmann, F. Deng, A. Hagstrom, C. A. Schmuttenmaer and J.-H. Kim, ACS Photonics, 3(5), 784 (2016).

    Article  CAS  Google Scholar 

  38. A. L. Hagstrom, H.-L. Lee, M.-S. Lee, H.-S. Choe, J. Jung, B.-G. Park, W.-S. Han, J.-S. Ko, J.-H. Kim and J.-H. Kim, ACS Appl. Mater. Interfaces, 10(10), 8985 (2018).

    Article  CAS  Google Scholar 

  39. K. Okumura, K. Mase, N. Yanai and N. Kimizuka, Chem. - Eur. J., 22(23), 7721 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work; was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A3B07049650) and by the Korean government (MSIT) through GCRC-SOP (No. 2011-0030013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hyuk Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HL., Lee, MS., Park, H. et al. Visible-to-UV triplet-triplet annihilation upconversion from a thermally activated delayed fluorescence/pyrene pair in an air-saturated solution. Korean J. Chem. Eng. 36, 1791–1798 (2019). https://doi.org/10.1007/s11814-019-0355-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0355-2

Keywords

Navigation