Skip to main content
Log in

Toward an intelligent approach for predicting surface tension of binary mixtures containing ionic liquids

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Knowledge of the surface tension of ionic liquids (ILs) and their related mixtures is of central importance and enables engineers to efficiently design new processes dealing with these fluids on an industrial scale. It’s obvious that experimental determination of surface tension of every conceivable IL and its mixture with other compounds would be a herculean task. Besides, experimental measurements are intrinsically laborious and expensive; therefore, accurate prediction of the property using a reliable technique would be overwhelmingly favorable. To do so, a modeling method based on artificial neural network (ANN) trained by Bayesian regulation back propagation training algorithm (trainbr) has been proposed to predict surface tension of the binary ILs mixtures. A total set of 748 data points of binary surface tension of IL systems within temperature range of 283.1-348.15 K was used to train and test the applied network. The obtained results indicated that the predictive values and experimental data are quite matching, representing reliability of the used ANN model for such purpose. Also, compared with other methods, such as SVM, GA-SVM, GA-LSSVM, CSA-LSSVM, GMDH-PNN and ANN trained with trainlm algorithm the proposed model was better in terms of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.-A. Ahmadi, B. Pouladi, Y. Javvi, S. Alfkhani and R. Soleimani, J. Supercrit. Fluids, 97, 81 (2015).

    Article  CAS  Google Scholar 

  2. M. A. Ahmadi, R. Haghbakhsh, R. Soleimani and M. B. Bajestani, J. Supercrit. Fluids, 92, 60 (2014).

    Article  CAS  Google Scholar 

  3. A. Ahosseini, B. Sensenich, L. R. Weatherley and A. M. Scurto, J. Chem. Eng. Data, 55, 1611 (2009).

    Article  CAS  Google Scholar 

  4. K. A. Al-Shayji, Modeling, simulation, and optimization of large-scale commercial desalination plants, Virginia Polytechnic Institute and State University (1998).

    Google Scholar 

  5. N. Altinkok and R. Koker, Mater. Design, 25, 595 (2004).

    Article  CAS  Google Scholar 

  6. S. Atashrouz, H. Mirshekar, A. Hemmati-Sarapardeh, M. K. Moraveji and B. Nasernejad, Korean J. Chem. Eng., 34(2), 425 (2017).

    Article  CAS  Google Scholar 

  7. D. R. Baughman and Y. A. Liu, Neural networks in bioprocessing and chemical engineering, Academic Press (2014).

    Google Scholar 

  8. G. Betts and S. Walker, Verification and validation of food spoilage models, Understanding and measuring shelf life of food, CRC Press, Boca Raton, 184 (2004).

    Google Scholar 

  9. R. Bini, C. Chiappe, C. Duce, A. Micheli, R. Solaro, A. Starita and M. R. Tiné, Green Chemistry, 10, 306 (2008).

    Article  CAS  Google Scholar 

  10. R. B. Boozarjomehry, F. Abdolahi and M. A. Moosavian, Fluid Phase Equilib., 231, 188 (2005).

    Article  CAS  Google Scholar 

  11. P. J. Carvalho, M. G. Freire, I. M. Marrucho, A. J. Queimada and J. A. Coutinho, Surface tensions for the 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquids (2008).

    Google Scholar 

  12. A. J. Costa, J. M. Esperança, I. M. Marrucho and L. s. P. N. Rebelo, J. Chem. Eng. Data, 56, 3433 (2011).

    Article  CAS  Google Scholar 

  13. N. Darwish, N. Hilal, H. Al-Zoubi and A. W. Mohammad, Chem. Eng. Res. Design, 85, 417 (2007).

    Article  CAS  Google Scholar 

  14. H. Demuth, M. Beale and M. Hagan, Neural network toolboxTM 6, User’s guide, 37 (2008).

    Google Scholar 

  15. P. Díaz-Rodríguez, J. C. Cancilla, G. Matute and J. S. Torrecilla, J. Ind. Eng. Chem., 21, 1350 (2015).

    Article  CAS  Google Scholar 

  16. B. N. K. L. Ding, Neural network fundamentals with graphs, algorithms and applications, Mac Graw-Hill (1996).

    Google Scholar 

  17. Q. Dong, C. D. Muzny, A. Kazakov, V. Diky, J. W. Magee, J. A. Widegren, R. D. Chirico, K. N. Marsh and M. Frenkel, J. Chem. Eng. Data, 52, 1151 (2007).

    Article  CAS  Google Scholar 

  18. A. Eslamimanesh, F. Gharagheizi, AH. Mohammadi and D. Richon, Chem. Eng. Sci., 66, 3039 (2011).

    Article  CAS  Google Scholar 

  19. R. Eslamloueyan and M. Khademi, Int. J. Thermal Sci., 48, 1094 (2009).

    Article  CAS  Google Scholar 

  20. R. Eslamloueyan and M. H. Khademi, J. Chem. Eng. Data, 54, 922 (2009).

    Article  CAS  Google Scholar 

  21. M.-R. Fatehi, S. Raeissi and D. Mowla, J. Supercrit. Fluids, 95, 60 (2014).

    Article  CAS  Google Scholar 

  22. J. A. Freeman and D. M. Skapura, Algorithms, applications, and programming techniques, Addison-Wesley Publishing Company, U. S. A. (1991).

    Google Scholar 

  23. M. Freemantle, An introduction to ionic liquids, Royal Society of Chemistry (2010).

    Google Scholar 

  24. F. l. M. Gaciño, T. Regueira, L. Lugo, M. a. J. Comuñas and J. Fernández, J. Chem. Eng. Data, 56, 4984 (2011).

    Article  CAS  Google Scholar 

  25. G. García-Miaja, J. Troncoso and L. Romaní, J. Chem. Thermodynamics, 41, 161 (2009).

    Article  CAS  Google Scholar 

  26. M. Geppert-Rybczyńska, J. K. Lehmann, J. Safarov and A. Heintz, J. Chem. Thermodynamics, 62, 104 (2013).

    Article  CAS  Google Scholar 

  27. F. Gharagheizi, A. Eslamimanesh, A. H. Mohammadi and D. Richon, Chem. Eng. Sci., 66, 2959 (2011).

    Article  CAS  Google Scholar 

  28. F. Gharagheizi, A. Eslamimanesh, M. Sattari, A. H. Mohammadi and D. Richon, AIChE J., 59, 613 (2013).

    Article  CAS  Google Scholar 

  29. F. Gharagheizi, A. Eslamimanesh, B. Tirandazi, A. H. Mohammadi and D. Richon, Chem. Eng. Sci., 66, 4991 (2011).

    Article  CAS  Google Scholar 

  30. F. Gharagheizi, P. Ilani-Kashkouli and A. H. Mohammadi, Chem. Eng. Sci., 78, 204 (2012).

    Article  CAS  Google Scholar 

  31. A. Golbraikh and A. Tropsha, J. Mol. Graphics Modelling, 20, 269 (2002).

    Article  CAS  Google Scholar 

  32. K. Golzar, S. Amjad-Iranagh and H. Modarress, Ind. Eng. Chem. Res., 53, 7247 (2014).

    Article  CAS  Google Scholar 

  33. K. R. Harris, M. Kanakubo and L. A. Woolf, J. Chem. Eng. Data, 51, 1161 (2006).

    Article  CAS  Google Scholar 

  34. M. Hashemkhani, R. Soleimani, H. Fazeli, M. Lee, A. Bahadori and M. Tavalaeian, J. Mol. Liq., 211, 534 (2015).

    Article  CAS  Google Scholar 

  35. S. Haykin, Neural networks: A comprehensive foundation: Macmillan college publishing company, New York (1994).

    Google Scholar 

  36. X. He, X. Zhang, S. Zhang, J. Liu and C. Li, Fluid Phase Equilib., 238, 52 (2005).

    Article  CAS  Google Scholar 

  37. J. Hekayati and S. Raeissi, J. Mol. Liq., 231, 451 (2017).

    Article  CAS  Google Scholar 

  38. A. Z. Hezave, M. Lashkarbolooki and S. Raeissi, Fluid Phase Equilib., 352, 34 (2013).

    Article  CAS  Google Scholar 

  39. A. Z. Hezave, M. Lashkarbolooki and S. Raeissi, Fluid Phase Equilib., 314, 128 (2012).

    Article  CAS  Google Scholar 

  40. A. Z. Hezave, S. Raeissi and M. Lashkarbolooki, Ind. Eng. Chem. Res., 51, 9886 (2012).

    Article  CAS  Google Scholar 

  41. H. Jiang, Y. Zhao, J. Wang, F. Zhao, R. Liu and Y. Hu, J. Chem. Thermodynam., 64, 1 (2013).

    Article  CAS  Google Scholar 

  42. G. W. Kauffman and P. C. Jurs, J. Chem. Information Computer Sci., 41, 408 (2001).

    Article  CAS  Google Scholar 

  43. A. Kazakov, J. Magee, R. Chirico, V. Diky, C. Muzny, K. Kroenlein and M. Frenkel, Nist standard reference database 147: Nist ionic liquids database—(ilthermo), version 2. 0, national institute of standards and technology, gaithersburg md, 20899.

  44. F. Kermanpour and H. Niakan, J. Chem. Thermodynam., 48, 129 (2012).

    Article  CAS  Google Scholar 

  45. M. Lashkarblooki, A. Z. Hezave, A. M. Al-Ajmi and S. Ayatollahi, Fluid Phase Equilib., 326, 15 (2012).

    Article  CAS  Google Scholar 

  46. M. Lashkarbolooki, Sep. Sci. Technol., 52, 1454 (2017).

    Article  CAS  Google Scholar 

  47. M. Lashkarbolooki, A. Z. Hezave and S. Ayatollahi, Fluid Phase Equilib., 324, 102 (2012).

    Article  CAS  Google Scholar 

  48. M. Lashkarbolooki, A. Z. Hezave and A. Babapoor, Korean J. Chem. Eng., 30, 213 (2013).

    Article  CAS  Google Scholar 

  49. M. Lashkarbolooki, Z. S. Shafipour and A. Z. Hezave, J. Supercrit. Fluids, 73, 108 (2013).

    Article  CAS  Google Scholar 

  50. M. Lashkarbolooki, Z. S. Shafipour, A. Z. Hezave and H. Farmani, J. Supercrit. Fluids, 75, 144 (2013).

    Article  CAS  Google Scholar 

  51. M. Lashkarbolooki, B. Vaferi, A. Shariati and A. Z. Hezave, Fluid Phase Equilib., 343, 24 (2013).

    Article  CAS  Google Scholar 

  52. S. Laugier and D. Richon, Fluid Phase Equilib., 210, 247 (2003).

    Article  CAS  Google Scholar 

  53. J. A. Lazzús, J. Taiwan Inst. Chem. Engineers, 40, 213 (2009).

    Article  CAS  Google Scholar 

  54. P. J. Linstrom and W. Mallard, Nist Chemistry Webbook; nist standard reference database no. 69 (2001).

    Google Scholar 

  55. H. Machida, R. Taguchi, Y. Sato, J. Smith and L. Richard, J. Chem. Eng. Data, 56, 923 (2010).

    Article  CAS  Google Scholar 

  56. S. Makridakis, S. C. Wheelwright and R. J. Hyndman, Forecasting methods and applications, John Wiley & Sons (2008).

    Google Scholar 

  57. S. G. Makridakis and S. C. Wheelwright, Forecasting methods for management (1989).

    Google Scholar 

  58. P. Mehra and B. W. Wah, Artificial neural networks: Concepts and theory, IEEE Computer Society Press Los Alamitos (1992).

    Google Scholar 

  59. G. Meindersma, M. Maase and A. De Haan, Ionic liquids. Ullmann’s encyclopedia of industrial chemistry, Weinham: Wiley-VCH Verlag GmbH & Co. KGaA (2000).

    Google Scholar 

  60. Y. Miao, Q. Gan and D. Rooney, Artificial neural network model to predict compositional viscosity over a broad range of temperatures, Intelligent Systems and Knowledge Engineering (ISKE), 2010 International Conference on, IEEE, 668 (2010).

    Google Scholar 

  61. M. Mirarab, M. Sharifi, M. A. Ghayyem and F. Mirarab, Fluid Phase Equilib., 371, 6 (2014).

    Google Scholar 

  62. S. Mohanty, Int. J. Refrigeration, 29, 243 (2006).

    Article  CAS  Google Scholar 

  63. A. Mohebbi, M. Taheri and A. Soltani, Int. J. Refrigeration, 31, 1317 (2008).

    Article  CAS  Google Scholar 

  64. F. Nami and F. Deyhimi, J. Chem. Thermodynam., 43, 22 (2011).

    Article  CAS  Google Scholar 

  65. H. Okuyucu, A. Kurt and E. Arcaklioglu, Mater. Design, 28, 78 (2007).

    Article  CAS  Google Scholar 

  66. M. Oliveira, M. Domínguez-Pérez, M. Freire, F. Llovell, O. Cabeza, J. Lopes-da-Silva, L. Vega and J. Coutinho, J. Phys. Chem. B, 116, 12133 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. M. S. Ozerdem, J. Mater. Process. Technol., 208, 470 (2008).

    Article  CAS  Google Scholar 

  68. B. E. Poling, J. M. Prausnitz and J. P. O’connell, The properties of gases and liquids, Mcgraw-hill New York (2001).

    Google Scholar 

  69. P. Pratim Roy, S. Paul, I. Mitra and K. Roy, Molecules, 14, 1660 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. E. Rilo, M. Domínguez-Pérez, J. Vila, L. Varela and O. Cabeza, J. Chem. Thermodynam., 49, 165 (2012).

    Article  CAS  Google Scholar 

  71. E. Rilo, J. Pico, S. García-Garabal, L. Varela and O. Cabeza, Fluid Phase Equilib., 285, 83 (2009).

    Article  CAS  Google Scholar 

  72. A. A. Rohani, G. Pazuki, H. A. Najafabadi, S. Seyfi and M. Vossoughi, Expert Systems with Applications, 38, 1738 (2011).

    Article  Google Scholar 

  73. T. Ross, J. Appl. Bacteriol., 81, 501 (1996).

    CAS  PubMed  Google Scholar 

  74. M. Sadrzadeh, T. Mohammadi, J. Ivakpour and N. Kasiri, Chem. Eng. Process.: Process Intensification, 48, 1371 (2009).

    Article  CAS  Google Scholar 

  75. M. Sadrzadeh, T. Mohammadi, J. Ivakpour and N. Kasiri, Chem. Eng. J., 144, 431 (2008).

    Article  CAS  Google Scholar 

  76. M. Safamirzaei and H. Modarress, Fluid Phase Equilib., 332, 165 (2012).

    Article  CAS  Google Scholar 

  77. M. Safamirzaei and H. Modarress, Thermochim. Acta, 545, 125 (2012).

    Article  CAS  Google Scholar 

  78. M. A. Sedghamiz, A. Rasoolzadeh and M. R. Rahimpour, J. CO2 Utilization, 9, 39 (2015).

    Article  CAS  Google Scholar 

  79. S. Seki, S. Tsuzuki, K. Hayamizu, Y. Umebayashi, N. Serizawa, K. Takei and H. Miyashiro, J. Chem. Eng. Data, 57, 2211 (2012).

    Article  CAS  Google Scholar 

  80. A. Shafiei, M. A. Ahmadi, S. H. Zaheri, A. Baghban, A. Amirfakhrian and R. Soleimani, J. Supercrit. Fluids, 95, 525 (2014).

    Article  CAS  Google Scholar 

  81. R. Soleimani, A. H. Saeedi Dehaghani and A. Bahadori, J. Mol. Liq., 242, 701 (2017).

    Article  CAS  Google Scholar 

  82. Z. Sterjovski, D. Nolan, K. Carpenter, D. Dunne and J. Norrish, J. Mater. Process. Technol., 170, 536 (2005).

    Article  CAS  Google Scholar 

  83. M. Tariq, M. G. Freire, B. Saramago, J. A. Coutinho, J. N. C. Lopes and L. P. N. Rebelo, Chem. Soc. Rev., 41, 829 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. J. Taskinen and J. Yliruusi, Adv. Drug Delivery Rev., 55, 1163 (2003).

    Article  CAS  Google Scholar 

  85. J. S. Torrecilla, J. Palomar, J. García, E. Rojo and F. Rodríguez, Chemometrics Intelligent Laboratory Systems, 93, 149 (2008).

    Article  CAS  Google Scholar 

  86. J. S. Torrecilla, F. Rodríguez, J. L. Bravo, G. Rothenberg, K. R. Seddon and I. López-Martin, Phys. Chem. Chem. Phys., 10, 5826 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. J. Troncoso, C. A. Cerdeiriña, Y. A. Sanmamed, L. Romaní and L. P. N. Rebelo, J. Chem. Eng. Data, 51, 1856 (2006).

    Article  CAS  Google Scholar 

  88. S. Urata, A. Takada, J. Murata, T. Hiaki and A. Sekiya, Fluid Phase Equilib., 199, 63 (2002).

    Article  CAS  Google Scholar 

  89. G. Vakili-Nezhaad, M. Vatani, M. Asghari and I. Ashour, J. Chem. Thermodynam., 54, 148 (2012).

    Article  CAS  Google Scholar 

  90. L. F. Vega, O. Vilaseca, F. Llovell and J. S. Andreu, Fluid Phase Equilib., 294, 15 (2010).

    Article  CAS  Google Scholar 

  91. A. Wandschneider, J. K. Lehmann and A. Heintz, J. Chem. Eng. Data, 53, 596 (2008).

    Article  CAS  Google Scholar 

  92. J.-y. Wang, H.-c. Jiang, Y.-m. Liu and Y.-q. Hu, J. Chem. Thermodynam., 43, 800 (2011).

    Article  CAS  Google Scholar 

  93. J.-Y. Wang, F.-Y. Zhao, Y.-M. Liu, X.-L. Wang and Y.-Q. Hu, Fluid Phase Equilib., 305, 114 (2011).

    Article  CAS  Google Scholar 

  94. Y. Wei, Q.-G. Zhang, Y. Liu, X. Li, S. Lian and Z. Kang, J. Chem. Eng. Data, 55, 2616 (2010).

    Article  CAS  Google Scholar 

  95. I. H. Witten, E. Frank, M. A. Hall and C. J. Pal, Data mining: Practical machine learning tools and techniques, Morgan Kaufmann (2016).

    Google Scholar 

  96. J. Zupan and J. Gasteiger, Neural networks for chemists: An introduction, John Wiley & Sons, Inc. (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Saeedi Dehaghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, R., Saeedi Dehaghani, A.H., Shoushtari, N.A. et al. Toward an intelligent approach for predicting surface tension of binary mixtures containing ionic liquids. Korean J. Chem. Eng. 35, 1556–1569 (2018). https://doi.org/10.1007/s11814-017-0326-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0326-4

Keywords

Navigation