Skip to main content
Log in

Nitrogen doped graphene/cobalt-based catalyst layers of a PEM fuel cell: Performance evaluation and multi-objective optimization

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The proton exchange membrane fuel cell could be made more commercially viable by substituting the expensive platinic catalyst without loss of performance. This should be done simultaneously through optimization and use of a non-precious metal catalyst. In this study, multi-objective optimization of the catalyst layer was done on nonprecious metal catalysts. Nitrogen-doped graphene (NG)-based cobalt was synthesized as a non-precious metal catalyst. Differential equations were solved at the modeling stage by the shooting method, and objective functions were solved at the optimization stage using sequential quadratic programming. NG-based cobalt was evaluated in a cell and then compared with the platinum catalyst. Results present the synthesized non-precious catalyst as an appropriate replacement for existing precious metal catalyst. Also, the polarization curve demonstrates that the current modeling is in good agreement with NG-based cobalt catalyst. Finally, the Pareto curve at the voltage of 0.6 V (and 300 A/m2 current density in the base case) indicated that the best tradeoff between cost and performance of the catalyst layer was achieved when the current density was increased in the range of 5% to 15%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Spiegel, PEM fuel cell modeling and simulation using Matlab, Elsevier Inc. (2008).

    Google Scholar 

  2. D.P. Wilkinson, J. Zhang, R. Hui, J. Fergus and X. Li, Proton Exchange Membrane Fuel Cells: Materials Properties and Performance, Taylor and Francis Group LLC (2010).

    Google Scholar 

  3. R. Othman, A. L. Dicks and Z. Zhu, Int. J. Hydrogen Energy, 37, 357 (2012).

    Article  CAS  Google Scholar 

  4. H. Ghanbarlou, S. Rowshanzamir, B. Kazeminasab and M. J. Parnian, J. Power Sources, 273, 981 (2015).

    Article  CAS  Google Scholar 

  5. K. Broka and P. Ekdunge, J. Appl. Electrochem., 27, 281 (1997).

    Article  CAS  Google Scholar 

  6. P. C. Sui, L. D. Chen, J. P. Seaba and Y. Wariishi, SAE Congress, 01, 61 (1999).

    Google Scholar 

  7. Q. Wang, D. Song, T. Navessin, S. Holdcroft and Z. Liu, Electrochim. Acta, 50, 725 (2004).

    Article  CAS  Google Scholar 

  8. W. Sun, B. A. Peppley and K. Karan, Electrochim. Acta, 50, 3359 (2005).

    Article  CAS  Google Scholar 

  9. M. Srinivasarao, D. Bhattacharyya, R. Rengaswamy and S. Narasimhan, Chem. Eng. Res. Des., 89, 10 (2011).

    Article  CAS  Google Scholar 

  10. A.A. Kulikovsky, Electrochim. Acta, 79, 31 (2012).

    Article  CAS  Google Scholar 

  11. S.O. Mert and Z. Özçelik, Int. J. Energy Res., 37, 1256 (2013).

    Article  CAS  Google Scholar 

  12. M. S. Feali and M. Fathipour, Russian J. Electrochem., 50, 561 (2014).

    Article  CAS  Google Scholar 

  13. S.M.C. Ang, D. J.L. Brett and S. Fraga, J. Power Sources, 195, 2754 (2010).

    Article  CAS  Google Scholar 

  14. J.C. Park, S. H. Park, M.W. Chung, C. H. Choi, B. K. Kho and S. I. Woo, J. Power Sources, 286, 166 (2015).

    Article  CAS  Google Scholar 

  15. D. Malko, T. Lopes, E.A. Ticianelli and A. Kucernak, J. Power Sources, 323, 189 (2016).

    Article  CAS  Google Scholar 

  16. B. Kazeminasab, S. Rowshanzamir and H. Ghadamian, Bulgarian Chem. Commun., 47, 38 (2015).

    Google Scholar 

  17. M. Moein-Jahromi and M. J. Kermani, Int. J. Hydrogen Energy, 37, 17954 (2012).

    Article  CAS  Google Scholar 

  18. S. Inamuddi, T.A. Cheema, S.M.J. Zaidi and S.U. Rahman, Renewable Energy, 36, 529 (2011).

    Article  Google Scholar 

  19. S. Obut and E. Alper, J. Power Sources, 196, 1920 (2011).

    Article  CAS  Google Scholar 

  20. N. Khajeh-Hosseini-Dalasm, M. Fesanghary, K. Fushinobu and K. Okazaki, Electrochim. Acta, 60, 55 (2012).

    Article  CAS  Google Scholar 

  21. R. O’Hayre, S. W. Cha, W. Colella and F. B. Prinz, Fuel Cell Fundamentals, New York, Wiley (2006).

    Google Scholar 

  22. J. Zhang, PEM fuel cell electrocatalysts and catalyst layers, Springer (2008).

    Book  Google Scholar 

  23. A. Alaswad, A.G. Olabi, A. Palumbo and M. Dassisti, PEM Fuel Cell Cost Analysis during the Period (1998-2014), Elsevier (2016).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soosan Rowshanzamir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazeminasab, B., Rowshanzamir, S. & Ghadamian, H. Nitrogen doped graphene/cobalt-based catalyst layers of a PEM fuel cell: Performance evaluation and multi-objective optimization. Korean J. Chem. Eng. 34, 2978–2983 (2017). https://doi.org/10.1007/s11814-017-0202-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0202-2

Keywords

Navigation