Skip to main content
Log in

Synergistic effect in low temperature co-pyrolysis of sugarcane bagasse and lignite

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Sugarcane bagasse was co-pyrolyzed with lignite in a fixed bed reactor to investigate the possible interaction during co-pyrolysis. GC-MS revealed that the concentration of phenols and aliphatic compounds in the tar increased with the addition of sugarcane bagasse, while the content of aromatic compounds had the contradictory tendency. The phenol content in co-pyrolyzed tar reached 20.35%, which increased by 142.26% compared with the calculated values. The sugarcane bagasse decomposition peak partly overlapped with lignite pyrolysis peak from TG-DTG curves, which meant more interaction between lignite and sugarcane bagasse during the pyrolysis process. The difference between the experimental and calculated values of pyrolysis products yield, tar components, DTG values and kinetics analysis indicated the synergetic effect between lignite and sugarcane bagasse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. A. Edreis, G.Q. Luo and H. Yao, J. Anal. Appl. Pyrol., 107, 107 (2014).

    Article  CAS  Google Scholar 

  2. P. Xian, Y. Lu, X.Y. Wang and L.Y. Zhong, Chemistry and Industry of Forest Products, 26, 65 (2006).

    CAS  Google Scholar 

  3. T. Mi, H. P. Chen, B. Gao and D. C. Liu, J. Huazhong Univ. Sci. Technol., 33, 71 (2005).

    CAS  Google Scholar 

  4. Y. F. Liao, C. C. Zeng, X.Q. Ma and J. H. Song, Journal of South China University Technol., 41, 1 (2013).

    CAS  Google Scholar 

  5. Y.B. Mao, L. Dong, Y.P. Dong, W.P. Liu, J.F. Chang, S. Yang and Z. C. Lv, Bioresour. Technol., 181, 155 (2015).

    Article  CAS  Google Scholar 

  6. Z.Q. Wu, S. Z. Wang, J. Zhao, L. Chen and H.Y. Meng, Bioresour. Technol., 169, 220 (2014).

    Article  CAS  Google Scholar 

  7. Y.Y. Song, A. Tahmasebi and J. L. Yu, Bioresour. Technol., 174, 204 (2014).

    Article  CAS  Google Scholar 

  8. A.O. Aboyade, J.F. Görgens, M. Carrier, E.L. Meyer and J.H. Knoetze, Fuel Processing Technol., 106, 310 (2013).

    Article  CAS  Google Scholar 

  9. S. Krerkkaiwan, C. Fushimi, A. Tsutsumi and P. Kuchonthara, Fuel Processing Technol., 115, 11 (2013).

    Article  CAS  Google Scholar 

  10. X. Yang, C.Y. Yuan, J. Xu and W. J. Zhang, Bioresour. Technol., 173, 1 (2014).

    Article  CAS  Google Scholar 

  11. A.O. Aboyade, M. Carrier, E.L. Meyer, H. Knoetze and J.F. Görgens, Energy Convers. Manage., 65, 198 (2013).

    Article  CAS  Google Scholar 

  12. X.M. He, Y. Pan, K. Chen and L. S. Wu, Coal Conversion, 35, 11 (2012).

    Article  CAS  Google Scholar 

  13. E. Kastanaki, D. Vamvuka, P. Grammelis and E. Kakaras, Fuel Processing Technol., 77, 159 (2002).

    Article  Google Scholar 

  14. A.G. Collot, Y. Zhuo, D.R. Dugwell and R. Kandiyoti, Fuel, 78, 667 (1999).

    Article  CAS  Google Scholar 

  15. B. Moghtaderi, C. Meesri and T. F. Wall, Fuel, 83, 745 (2004).

    Article  CAS  Google Scholar 

  16. A.O. Aboyade, M. Carrier, E. L. Meyer, J. H. Knoetze and J. F. Görgens, Thermochim. Acta, 530, 95 (2012).

    Article  CAS  Google Scholar 

  17. Z. F. Zheng, Y.B. Huang, J.C. Jiang, L. Zhou and X.Q. Yang, Journal of Southwest Forestry University, 30, 63 (2010).

    CAS  Google Scholar 

  18. X. H. Cheng, X. M. He, D. Dai, D. Zhang and X. C. Zeng, Chemical Industry and Engineering Progress, 34, 4385 (2015).

    Google Scholar 

  19. N.T. Weiland, N.C. Means and B.D. Morreale, Fuel, 94, 563 (2012).

    Article  CAS  Google Scholar 

  20. M. S. Masnadi, R. Habibi, J. Kopyscinski, J. M. Hill, X.T. Bi, C. J. Lim, N. Ellis and J.R. Grace, Fuel, 117, 1204 (2014).

    Article  CAS  Google Scholar 

  21. R. B. Cahyono, A. N. Rozhan, N. Yasuda, T. Nomura, S. Hosokai, U. Kashiwaya and T. Akiyama, Fuel Process. Technol., 113, 84 (2013).

    Article  CAS  Google Scholar 

  22. J. Xiong, Z. J. Zhou, S.Q. Xu and G. S. Yu, CIESC J., 1, 192 (2011).

    Google Scholar 

  23. S.Q. Xu, Z. J. Zhou, Z. H. Dai, G. S. Yu and X. Gong, Journal of Chemical Engineering of Chinese Universities, 1, 65 (2010).

    Google Scholar 

  24. N. Howaniec, A. Smolinski, K. Stanczyk and M. Pichlak, International Journal of Hydrogen Energy, 36, 14455 (2011).

    Article  CAS  Google Scholar 

  25. H.X. Wu, H. B. Li and Z. L. Zhao, Journal of Fuel Chemistry and Technology, 37, 538 (2009).

    CAS  Google Scholar 

  26. S. Yi, X. M. He, X. H. Cheng, H.T. Lin and H. Zheng, Chemical Engineering, 44, 64 (2016).

    Google Scholar 

  27. S. Ahn, G. Choi and D. Kim, Biomass Bioenergy, 71, 144 (2014).

    Article  CAS  Google Scholar 

  28. C.X. Chen, X.Q. Ma and Y. He, Bioresour. Technol., 117, 264 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, S., He, Xm., Lin, Ht. et al. Synergistic effect in low temperature co-pyrolysis of sugarcane bagasse and lignite. Korean J. Chem. Eng. 33, 2923–2929 (2016). https://doi.org/10.1007/s11814-016-0129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0129-z

Keywords

Navigation