Skip to main content
Log in

Sustainable production of acetaldehyde from lactic acid over the carbon catalysts

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The synthesis of acetaldehyde from lactic acid over the carbon material catalysts was investigated. The carbon materials were characterized by scanning electron microscopy for morphologic features, by X-ray diffraction for crystal phases, by Fourier transform infrared spectroscopy for functional group structures, by N2 sorption for specific surface area and by ammonia temperature-programed desorption for acidity, respectively. Among the tested carbon catalysts, mesoporous carbon displayed the most excellent catalytic performance. By acidity analysis, the medium acidity is a crucial factor for catalytic performance: more medium acidity favored the formation of acetaldehyde from lactic acid. To verify, we compared the catalytic performance of fresh activated carbon with that of the activated carbon treated by nitric acid. Similarly, the modified activated carbon also displayed better activity due to a drastic increase of medium acidity amount. However, in contrast to fresh carbon nanotube, the treated sample displayed worse activity due to decrease of medium acidity amount. The effect of reaction temperature and time on stream on the catalytic performance was also investigated. Under the optimal reaction conditions, 100% lactic acid conversion and 91.6% acetaldehyde selectivity were achieved over the mesoporous carbon catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Sun, K. K. Zhu, F. Gao, C. M. Wang, J. Liu, C.H. F. Peden and Y. Wang, J. Am. Chem. Soc., 133, 11096 (2011).

    Google Scholar 

  2. M. S. Holm, S. Saravanamurugan and E. Taarning, Science, 328, 602 (2010).

    Article  CAS  Google Scholar 

  3. Y. L. Wang, W. P. Deng, B. J. Wang, Q. H. Zhang, X. Y. Wan, Z. C. Tang, Y. Wang, C. Zhu, Z. X. Cao, G. C. Wang and H. L. Wan, Nat. Commun., 4, 2141 (2013).

    Google Scholar 

  4. I. Abdullahi, T. J. Davis, D. M. Yun and J. E. Herrera, Appl. Catal. A-Gen., 469, 8 (2014).

    Article  CAS  Google Scholar 

  5. B. Katryniok, S. Paul and F. Dumeignil, Green Chem., 12, 1910 (2010).

    Article  CAS  Google Scholar 

  6. Z. J. Zhai, X. L. Li, C. M. Tang, J. S. Peng, N. Jiang, W. Bai, H. J. Gao and Y. W. Liao, Ind. Eng. Chem. Res., 53, 10318 (2014).

    Article  CAS  Google Scholar 

  7. D. Esposito and M. Antonietti, Chemsuschem, 6, 989 (2013).

    Article  CAS  Google Scholar 

  8. C. A. Ramirez-Lopez, J. R. Ochoa-Gomez, S. Gil-Rio, O. Gomez- Jimenez-Aberasturi and J. Torrecilla-Soria, J. Chem. Technol. Biot., 86, 867 (2011).

    Article  CAS  Google Scholar 

  9. C. M. Tang, Y. Zeng, X. G. Yang, Y. C. Lei and G. Y. Wang, J. Mol. Catal. A-Chem., 314, 15 (2009).

    Article  CAS  Google Scholar 

  10. C. M. Tang, Y. Zeng, P. Cao, X. G. Yang and G. Y. Wang, Catal. Lett., 129, 189 (2009).

    Article  CAS  Google Scholar 

  11. A. Brennfuhrer, H. Neumann and M. Beller, Chemcatchem, 1, 28 (2009).

    Article  CAS  Google Scholar 

  12. C. M. Tang, X. L. Li and G. Y. Wang, Korean J. Chem. Eng., 29, 1700 (2012).

    Article  CAS  Google Scholar 

  13. J. F. Zhang, Y. L. Zhao, X. Z. Feng, M. Pan, J. Zhao, W. J. Ji and C.-T. Au, Catal. Sci. Technol., 4, 1376 (2014).

    Article  CAS  Google Scholar 

  14. C. M. Tang, J. S. Peng, G. C. Fan, X. L. Li, X. L. Pu and W. Bai, Catal. Commun., 43, 231 (2014).

    Article  CAS  Google Scholar 

  15. J. S. Peng, X. L. Li, C. M. Tang and W. Bai, Green Chem., 16, 108 (2014).

    Article  CAS  Google Scholar 

  16. J. H. Hong, J.-M. Lee, H. Kim, Y. K. Hwang, J.-S. Chang, S. B. Halligudi and Y.-H. Han, Appl. Catal. A-Gen., 396, 194 (2011).

    Article  CAS  Google Scholar 

  17. J. M. Lee, D. W. Hwang, Y. K. Hwang, S. B. Halligudi, J. S. Chang and Y. H. Han, Catal. Commun., 11, 1176 (2010).

    Article  CAS  Google Scholar 

  18. C. M. Tang, J. S. Peng, X. L. Li, Z. J. Zhai, N. Jiang, W. Bai, H. J. Gao and Y. W. Liao, RSC Adv., 4, 28875 (2014).

    Google Scholar 

  19. P. Sun, D. H. Yu, K. M. Fu, M. Y. Gu, Y. Wang, H. Huang and H. H. Ying, Catal. Commun., 10, 1345 (2009).

    Article  CAS  Google Scholar 

  20. T. M. Aida, A. Ikarashi, Y. Saito, M. Watanabe, R. L. Smith and K. Arai, J. Supercrit. Fluid., 50, 257 (2009).

    Article  CAS  Google Scholar 

  21. J. F. Zhang, J. P. Lin and P. L. Cen, Can. J. Chem. Eng., 86, 1047 (2008).

    Article  CAS  Google Scholar 

  22. H. J. Wang, D. H. Yu, P. Sun, J. Yan, Y. Wang and H. Huang, Catal. Commun., 9, 1799 (2008).

    Article  CAS  Google Scholar 

  23. V. C. Ghantani, S. T. Lomate, M. K. Dongare and S. B. Umbarkar, Green Chem., 15, 1211 (2013).

    Article  CAS  Google Scholar 

  24. C. M. Tang, J. S. Peng, X. L. Li, Z. J. Zhai, W. Bai, N. Jiang, H. J. Gao and Y. W. Liao, Green Chem., 17, 1159 (2015).

    Article  CAS  Google Scholar 

  25. N. Li, J. X. Xu, H. Chen and X. Y. Wang, J. Nanosci. Nanotechnol., 14, 5157 (2014).

    Article  CAS  Google Scholar 

  26. M. Ruthiraan, N. M. Mubarak, R. K. Thines, E. C. Abdullah, J. N. Sahu, N. S. Jayakumar and P. Ganesan, Korean J. Chem. Eng., 32, 446 (2015).

    Article  CAS  Google Scholar 

  27. J. F. Chang, L. G. Feng, C. P. Liu, W. Xing and X. L. Hu, Angew. Chem. Int. Edit., 53, 122 (2014).

    Article  CAS  Google Scholar 

  28. D. T. D. Tang, K. D. Collins, J. B. Ernst and F. Glorius, Angew. Chem. Int. Edit., 53, 1809 (2014).

    Article  CAS  Google Scholar 

  29. L. Shang, T. Bian, B. H. Zhang, D. H. Zhang, L. Z. Wu, C. H. Tung, Y. D. Yin and T. R. Zhang, Angew. Chem. Int. Edit., 53, 250 (2014).

    Article  CAS  Google Scholar 

  30. E. Sairanen, K. Vilonen, R. Karinen and J. Lehtonen, Top. Catal., 56, 512 (2013).

    Article  CAS  Google Scholar 

  31. G. Liu, Y. Liu, Z. L. Wang, X. Z. Liao, S. J. Wu, W. X. Zhang and M. J. Jia, Micropor. Mesorpor. Mater., 116, 439 (2008).

    Article  CAS  Google Scholar 

  32. L. Borchardt, M. Oschatz, S. Graetz, M. R. Lohe, M. H. Rummell and S. Kaskel, Micropor. Mesorpor. Mater., 186, 163 (2014).

    Article  CAS  Google Scholar 

  33. J. F. Zhang, Y. L. Zhao, M. Pan, X. Z. Feng, W. J. Ji and C. T. Au, ACS Catal., 1, 32 (2011).

    Article  CAS  Google Scholar 

  34. G. Sastre, A. Chica and A. Corma, J. Catal., 195, 227 (2000).

    Article  CAS  Google Scholar 

  35. F. Jimenez-Cruz and G. C. Laredo, Fuel, 83, 2183 (2004).

    Article  CAS  Google Scholar 

  36. J. Dong, F. R. van de Voort, A. A. Ismail, E. Akochi-Koble and D. Pinchuk, Lubric. Eng., 56, 12 (2000).

    CAS  Google Scholar 

  37. M. Behrens, F. Studt, I. Kasatkin, S. Kuhl, M. Havecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B. L. Kniep, M. Tovar, R. W. Fischer, J. K. Norskov and R. Schlogl, Science, 336, 893 (2012).

    Article  CAS  Google Scholar 

  38. L. Deiana, Y. Jiang, C. Palo-Nieto, S. Afewerki, C. A. Incerti-Pradillos, O. Verho, C. W. Tai, E. V. Johnston and A. Cordova, Angew. Chem. Int. Edit., 53, 3447 (2014).

    Article  CAS  Google Scholar 

  39. X. J. Jin, K. Yamaguchi and N. Mizuno, Angew. Chem. Int. Edit., 53, 455 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congming Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Peng, J., Li, X. et al. Sustainable production of acetaldehyde from lactic acid over the carbon catalysts. Korean J. Chem. Eng. 33, 99–106 (2016). https://doi.org/10.1007/s11814-015-0094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0094-y

Keywords

Navigation