Skip to main content
Log in

Electrochemical bromination and oxidation of alkyl aromatic compounds by two-phase electrolysis

  • Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A simple, regioselective, environmentally clean and economical method for the preparation of side chain/ ring brominated aromatic compounds is reported in 70–98% yield by an electrochemical method using two phase electrolysis technique. Electrochemical reactions were carried out using aqueous 25–50 wt% sodium bromide containing catalytic amount (5 wt%) of hydrobromic acid as an aqueous phase and chloroform containing alkyl aromatic compounds as an organic phase, at a temperature of 0–30 °C in an undivided cell. The same two-phase electrolytic system can be used for the oxidation of benzylic alcohols to the corresponding benzaldehydes in 80–94% yield without over oxidation to carboxylic acids. The advantage of this very mild procedure is a room temperature reaction used with an undivided cell. Excellent conversions are observed. After completion of alcohol oxidation the electrolyte can be reused for a number of times, demonstrating “spent reagent” free electro organic reaction as an attractive one. In the case of side chain/ring bromination of alkyl aromatic compounds, the electrolyte can be reused after making up the concentration of the electrolyte with 47 wt% HBr solution. In some cases homogeneous electrolysis is applied, where the two-phase electrolysis did not work. Styrene epoxidation and α-bromination of ketones underwent homogeneous electrolysis at room temperature without any catalyst. The reaction was performed in CH3CN-water (3: 2) using equimolar amount of NaBr as an electrolyte to get 68% of styrene epoxide. Use of an ionic liquid 1-butyl 3-methyl imidazolium bromide (Bmim) Br, instead of NaBr improved the yield and current efficiency of styrene epoxide to 86%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Shaikh and A. Sudalai Tetrahedron Lett., 46, 5587 (2005).

    Article  CAS  Google Scholar 

  2. M. Eissen and D. Lenoir, Chem. Eng. J., 14, 9830 (2008).

    CAS  Google Scholar 

  3. A. Chakradhar, R. Roopa, K. C. Rajanna and P.K. Saiprakash, Synth. Commun., 39, 1817 (2009).

    Article  CAS  Google Scholar 

  4. R. Mestres and J. Palenzuela Green Chem., 4, 314 (2003).

    Article  CAS  Google Scholar 

  5. J. B. Sperry and D. L. Wright, Chem. Soc. Rev., 35, 605 (2006).

    Article  CAS  Google Scholar 

  6. J. Yoshida, K. Kataoka, R. Horcajada and A. Nagaki Chem. Rev., 108, 2265 (2008).

    Article  CAS  Google Scholar 

  7. S. Suga, K. Matsumoto, K. Ueoka and J. Yoshida J. Am. Chem. Soc., 128, 7710 (2006).

    Article  CAS  Google Scholar 

  8. S.R. Forsyth and D. Pletcher, Extended abstracts of Ist International Symposium on Electro organic synthesis, Kurashiki, 35 (1986).

    Google Scholar 

  9. H. Fees, H. Wendt, J. Chem. Technol. Biotechnol., 30, 297 (1980).

    Article  Google Scholar 

  10. M. Morita, S. Yamamoto and Y. Matsuda, J. Appl. Electrochem., 18, 49 (1988).

    Article  Google Scholar 

  11. T. Raju, K. Kulangiappar, K. Shankar and M. Anbu Kulandai Electrochim. Acta, 51, 356 (2005).

    Article  CAS  Google Scholar 

  12. A. Muthukumaran, T. Raju and V. Krishnan, Bull. Electrochem., 9, 630 (1993).

    Google Scholar 

  13. M. Anbu Kulandainathan, K. Kulangiappar, M. Elangovan, S. Govindu, T. Raju and V. Krishnan, Bull. Electrochem., 16, 392 (2000).

    CAS  Google Scholar 

  14. T. Raju, K. Kulangiappar, M. Anbu Kulandainathan, M. Revathy, U. Uma and A. Malini, Tetrahedron Lett., 47, 4581 (2006).

    Article  CAS  Google Scholar 

  15. T. Ogamino, K. Mori, S. Yamamura and S. Nishiyama, Electrochim. Acta, 49, 4865 (2004).

    Article  CAS  Google Scholar 

  16. K. Rossen, R. P. Volante and P. J. Reider Tetrahedron Lett., 38, 777 (1997).

    Article  CAS  Google Scholar 

  17. N. H. Jonathan, A. Ahmed and H. S. Rodney, US Patent, 5,385,650. Jan 31 (1995).

  18. T. Raju, K. Kulangiappar and M. Anbu Kulandainathan, Tetrahedron Lett., 46, 7047 (2005).

    Article  CAS  Google Scholar 

  19. K. Kulangiappar, G. Karthick and M. Anbu Kulandainathan, Synth. Commun., 39, 2304 (2010).

    Article  CAS  Google Scholar 

  20. Ullman’s encyclopedia of Industrial chemistry, 6th Ed., Wiley-VCH, Weinheim Electronic Release (1998).

  21. A. Butler and J. V. Walker, Chem. Rev., 93, 1937 (1993).

    Article  CAS  Google Scholar 

  22. M. Hudluchy, Oxidations in organic chemistry, ACS Monograph series, American Chemical society Washington, DC (1990).

    Google Scholar 

  23. S. S. Stahl, Angew. Chem., Int. Ed., 43, 3400 (2004).

    Article  CAS  Google Scholar 

  24. G. Cainelli and G. Cardillo, Chromium oxidants in organic chemistry, Springer, Berlin (1984).

    Book  Google Scholar 

  25. M. Musawir, P. N. Davey, G. Kelly and I.V. Kozhevnikov Chem. Commun., 14, 14 (2003).

    Google Scholar 

  26. R. E.W. Jansson and N. R. Tomov J. Appl. Electrochem., 10, 583 (1980).

    Article  CAS  Google Scholar 

  27. Y. Shimizu, K. Mitsudo and H. Tanaka, Tetrahedron Lett., 46, 8975 (2005).

    Article  CAS  Google Scholar 

  28. B. S. Koo, C. K. Lee and K. J. Lee, Synth. Commun., 32, 2115 (2002).

    Article  CAS  Google Scholar 

  29. T. Yoshida, M. Okimoto and M. Hoshi, Synth. Commun., 41, 3134 (2011).

    Article  CAS  Google Scholar 

  30. M. C. Jose, M. T. Molina and A. Shazia, Chem. Rev., 104, 2857 (2004).

    Article  CAS  Google Scholar 

  31. B. S. Lane and K. Burgess, Chem. Rev., 103, 2457 (2003).

    Article  CAS  Google Scholar 

  32. I. Sakia, B. Kashyap and P. Phukan, Synth. Commun., 40, 2647 (2010).

    Article  CAS  Google Scholar 

  33. T. Raju and K. Kulangiappar, Unpublished results.

  34. I. Massuquinini, J. M. Antunio, P. Ana, D. I. Esteves and J. M. Maria, Comptes Rendus Chimie., 841 (2009).

    Google Scholar 

  35. T. Raju and K. Kulangiappar, Unpublished results.

  36. A. M. Erian, S. M. Sherif and H. M. Gaber, Molecules., 8, 793 (2003).

    Article  CAS  Google Scholar 

  37. C. Giodano, G. Castaldi and C. Giordano, JP92054657 — B2 (1992).

  38. L. C. King and G. K. Ostrum, J. Org. Chem., 29, 3459 (1964).

    Article  CAS  Google Scholar 

  39. A. T. Khan, P. Goswami and L.H. Choudhury, Tetrahedron Lett., 47, 2751 (2006).

    Article  CAS  Google Scholar 

  40. K. Tanemura, T. Suzuki, Y. Nishida, K. Satsumabayashi and T. Horaguchi, Chem. Lett., 32, 932 (2003).

    Article  CAS  Google Scholar 

  41. S. Kajigaeshi, T, Kakinami, T. Okamoto and S. Fujisaki, Bull. Chem. Soc. Jpn., 60, 1159 (1987).

    Article  CAS  Google Scholar 

  42. R. Senthil Kumar, K. Kulangiappar and M. Anbu Kulandainathan, Synth. Commun., 40, 1736 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raju Thasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thasan, R., Kumarasamy, K. Electrochemical bromination and oxidation of alkyl aromatic compounds by two-phase electrolysis. Korean J. Chem. Eng. 31, 365–373 (2014). https://doi.org/10.1007/s11814-014-0012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0012-8

Keywords

Navigation