Skip to main content
Log in

Structural modeling of petroleum fractions based on mixture viscosity and Watson K factor

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Two procedures have been developed for structural modeling of petroleum fractions based on mixture viscosity and Watson K factor. The representative molecules of paraffinic, naphthenic and aromatic hydrocarbons, based upon Ruzicka’s structural model, have been determined for lube-oil cut SAE 10 from Tehran oil refinery. Unlike previous methods, the newly developed procedures do not require time-consuming and costly laboratory data such as true boiling point profile. Good agreement between predictions of the new models and experimental results has been observed. Moreover, the proposed methods take less run-time than previous models due to less experimental and computational complexities. The results indicate that Ruzicka’s procedure, based on vapor pressure, is only applicable for light hydrocarbon mixtures, while the new methods can be applied for structural modeling of a wide range of petroleum fractions. Furthermore, as a result of this study, the application of a vapor pressure constraint leads to a higher degree of accuracy than the earlier suggested constraint, partial pressure, by Ruzicka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. K. Sharma, S. L. S. Sarowha and S. D. Bhagat, J. Sep. Sci., 26, 1657 (2003).

    Article  CAS  Google Scholar 

  2. T. V. Choudhary and P. F. Meier, Fuel Process Technol., 89, 697 (2008).

    Article  CAS  Google Scholar 

  3. P. F. Meier, D. B. Ghonasgi and M. Wardinsky, US Patent, 6,275,776 B1 (2001).

  4. K. H. Altgelt and M. M. Boduszynski, Composition and analysis of heavy petroleum fractions, Marcel Dekker Inc., New York (1994).

    Google Scholar 

  5. I. Merdrignac and D. Espinat, Oil & Gas Science and Technology — Rev. IFP, 62, 7 (2007).

    Article  CAS  Google Scholar 

  6. S. Zh. Zhiming Xu, Ch. Xu and K. H. Chung, J. Petrol. Sci. Eng., 41, 233 (2004).

    Article  Google Scholar 

  7. P. K. Huang and Th. E. Daubert, Ind. Eng. Chem. Process Des. Dev., 13, 359 (1974).

    Article  CAS  Google Scholar 

  8. R. Van Grieken, B. Coto, E. Romero and J. J. Espada, Ind. Eng. Chem. Res., 44, 8106 (2005).

    Article  Google Scholar 

  9. B. Coto, R. Van Grieken, J. L. Peña and J. J. Espada, Chem. Eng. Sci., 61, 4381 (2006).

    Article  CAS  Google Scholar 

  10. B. Coto, R. Van Grieken, J. L. Peña and J. J. Espada, Chem. Eng. Sci., 61, 8028 (2006).

    Article  CAS  Google Scholar 

  11. M.R. Riazi, Characterization and properties of petroleum fractions, American Society for Testing and Materials (ASTM), Philadelphia (2005).

    Book  Google Scholar 

  12. M. R. Riazi, Ind. Eng. Chem. Res., 28, 1731 (1989).

    Article  CAS  Google Scholar 

  13. M. R. Riazi, Ind. Eng. Chem. Res., 36, 4299 (1997).

    Article  CAS  Google Scholar 

  14. Sh. Hu, G. Towler and X. X. Zhu, Ind. Eng. Chem. Res., 41, 825 (2002).

    Article  CAS  Google Scholar 

  15. V. Jr. Ruzicka, R. Frydova and J. Novak, Fluid Phase Equilib., 32, 27 (1986).

    Article  CAS  Google Scholar 

  16. Gh. R. Vakili-Nezhaad, H. Modarress and Gh. A. Mansoori, Chem. Eng. Technol., 22, 847 (1999).

    Article  CAS  Google Scholar 

  17. J. J. Espada, B. Coto and J. L. Peña, Energy Fuels, 23, 888 (2009).

    Article  CAS  Google Scholar 

  18. G. Smith, J. Winnick, D. S. Abrams and J.M. Prausnitz, Can. J. Chem. Eng., 54, 337 (1976).

    Article  CAS  Google Scholar 

  19. V. Jr. Ruzicka, A. Fredenslund and P. Rasmussen, Ind. Eng. Chem. Process Des. Dev., 22, 49 (1883).

    Article  Google Scholar 

  20. A. B. Macknick and J.M. Prausnitz, Ind. Eng. Chem. Fundam., 18, 348 (1979).

    Article  CAS  Google Scholar 

  21. M. Reinhard and A. Drefahl, Handbook for estimating physicochemical properties of organic compounds, John Wiley and Sons Inc., Canada (1999).

    Google Scholar 

  22. A. K. Mehrotra, Can. J. Chem. Eng., 72, 554 (1994).

    Article  CAS  Google Scholar 

  23. T. E. Daubert and R. P. Danner, API technical data book-petroleum refining, American Petroleum Institute (API), Washington DC (1997).

    Google Scholar 

  24. M.R. Riazi and Y. A. Roomi, Ind. Eng. Chem. Res., 40, 1975 (2001).

    Article  CAS  Google Scholar 

  25. V. Simanzhenkov and R. Idem, Crude oil chemistry, Marcel Dekker Inc., New York (2003).

    Book  Google Scholar 

  26. J.G. Speight, Handbook of petroleum analysis, John Wiley & Sons Inc., New York (2001).

    Google Scholar 

  27. J. S. Magee and Jr. M. M. Mitchell, Fluid catalytic cracking: Science and technology, Elsevier Science Publishers, Netherlands (1993).

    Google Scholar 

  28. J. P. Wauquier, Petroleum refining 1. Crude oil, petroleum products, process flowsheets, Translated from the French by D.H. Smith, Édition Technip, Paris (1995).

    Google Scholar 

  29. ASTM D3343, Annual book of standards, American Society for Testing and Materials(ASTM), Pennsylvania(2005).

  30. J. J. McKetta, Encyclopedia of chemical processing and design: Offshore production platform, CRC Series in Chemical Engineering, Marcel Dekker Inc., New York (1990).

    Google Scholar 

  31. A. G. Goossens, Ind. Eng. Chem. Res., 36, 2500 (1997).

    Article  CAS  Google Scholar 

  32. M.R. Riazi and Th. E. Daubert, Ind. Eng. Chem. Process Des. Dev., 19, 289 (1980).

    Article  CAS  Google Scholar 

  33. J. G. Speight, The chemistry and technology of petroleum, CRC Press, Taylor & Francis Group, The United States of America (2007).

    Google Scholar 

  34. R. E. Treybal, Mass transfer operations, McGraw-Hill Book Company, Singapore (1981).

    Google Scholar 

  35. J. Leffler and H. T. Jr. Cullinan, Ind. Eng. Chem. Fundamen., 9, 84 (1970).

    Article  CAS  Google Scholar 

  36. J. Leffler and H. T. Jr. Cullinan, Ind. Eng. Chem. Fundamen., 9, 88 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Omidkhah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, A., Omidkhah, M., Karimzadeh, R. et al. Structural modeling of petroleum fractions based on mixture viscosity and Watson K factor. Korean J. Chem. Eng. 30, 465–473 (2013). https://doi.org/10.1007/s11814-012-0156-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0156-3

Key words

Navigation