Skip to main content
Log in

Synthesis of highly concentrated suspension of chemically converted graphene in organic solvents: Effect of temperature on the extent of reduction and dispersibility

  • Materials (organic, inorganic, electronic, thin films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We report the effect of temperature on the extent of graphene oxide reduction by hydrazine and the dispersibility of the resulting chemically converted graphene (CCG) in polar organic solvents. The extent of graphene oxide reduction at high temperatures was only slightly higher than at low temperatures (30–50 °C), while the dispersibility of the resulting CCG in organic solvents decreased markedly with increasing temperature. The low dispersibility of CCGs prepared at high temperatures was greatly affected by reduction and influenced by the formation of an irreversible agglomerate of CCG at high temperatures. The reduction of graphene oxide at low temperatures is necessary to prepare highly dispersible CCG in organic solvents. CCG prepared at 30 °C is dispersible in N-methyl-2-pyrrolidone concentrations as high as 0.71 mg/mL. The free-standing paper made of this CCG possessed an electrical conductivity of more than 22,000 S/m, one of the highest values ever reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).

    Article  CAS  Google Scholar 

  2. S. Park and R. S. Ruoff, Nat. Nanotechnol., 4, 217 (2009).

    Article  CAS  Google Scholar 

  3. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater., 22, 3906 (2010).

    Article  CAS  Google Scholar 

  4. J. R. Potts, D. R. Dreyer, C.W. Bielawski and R. S. Ruoff, Polymer, 52, 5 (2011).

    Article  CAS  Google Scholar 

  5. P. V. Kamat, J. Phys. Chem. Lett., 2, 242 (2011).

    Article  CAS  Google Scholar 

  6. D. Wei and Y. Liu, Adv. Mater., 22, 3225 (2010).

    Article  CAS  Google Scholar 

  7. C. Soldano, A. Mahmood and E. Dujardin, Carbon, 48, 2127 (2010).

    Article  CAS  Google Scholar 

  8. V. H. Pham, T.V. Cuong, T. T. Dang, S. H. Hur, B. S. Kong, E. J. Kim and J. S. Chung, J. Mater. Chem., DOI:10.1039/C1JM11146A.

  9. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.-B. T. Nguyen and R. S. Ruoff, Carbon, 45, 1558 (2007).

    Article  CAS  Google Scholar 

  10. D. Li, M. B. Müller, S. Gilje, R. B. Kaner and G.G. Wallace, Nat. Nanotechnol., 3, 101 (2008).

    Article  CAS  Google Scholar 

  11. S. Park, J. An, I. Jung, R. D. Piner, S. J. An, X. Li, A. Velamakanni and R. S. Ruoff, Nano Lett., 9, 1593 (2009).

    Article  CAS  Google Scholar 

  12. V. C. Tung, M. J. Allen, Y. Yang and R. B. Kaner, Nat. Nanotechnol., 4, 25 (2009).

    Article  CAS  Google Scholar 

  13. Y. Liang, D. Wu, X. Feng and K. Müllen, Adv. Mater., 21, 1679 (2009).

    Article  CAS  Google Scholar 

  14. J.R. Lomeda, C.D. Doyle, D.V. Kosynkin, W.-F. Hwang and J.M. Tour, J. Am. Chem. Soc., 130, 16201 (2008).

    Article  CAS  Google Scholar 

  15. S. Villar-Rodil, J. I. Paredes, A. Martínez-Alonso and M. D. Tascón, J. Mater. Chem., 19, 3591 (2009).

    Article  CAS  Google Scholar 

  16. V. H. Pham, T.V. Cuong, T.-D. Nguyen-Phan, H. D. Pham, E. J. Kim, S.H. Hur, E.W. Shin, S. Kim and J. S. Chung, Chem. Comm., 46, 4375 (2010).

    Article  CAS  Google Scholar 

  17. Z. Luo, Y. Lu, L.A. Somers and A.T.C. Johnson, J. Am. Chem. Soc., 131, 898 (2009).

    Article  CAS  Google Scholar 

  18. H.-J. Shin, K.K. Kim, A. Benayad, S.-M. Yoon, H. K. Park, I.-S. Jung, M. H. Jin, H.-K. Jeong, J.M. Kim, J.Y. Choi and Y. H. Lee, Adv. Funct. Mater., 19, 1987 (2009).

    Article  CAS  Google Scholar 

  19. I. K. Moon, J. Lee, R. S. Ruoff and H. Lee, Nat. Commun., 1, 73 (2010).

    Article  Google Scholar 

  20. W. Chen, L. Yan and P. R. Bangal, J. Phys. Chem. C, 114, 19885 (2010).

    Article  CAS  Google Scholar 

  21. C. M. Hansen, Hansen solubility parameters: A user handbook, CRC Press, Boca Raton, FL (2000).

    Google Scholar 

  22. R. C. Dougherty, J. Chem. Phys., 109, 7372 (1998).

    Article  CAS  Google Scholar 

  23. C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai and L.-J. Li, Chem. Mater., 21, 5674 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Suk Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, V.H., Dang, T.T., Cuong, T.V. et al. Synthesis of highly concentrated suspension of chemically converted graphene in organic solvents: Effect of temperature on the extent of reduction and dispersibility. Korean J. Chem. Eng. 29, 680–685 (2012). https://doi.org/10.1007/s11814-011-0232-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0232-0

Key words

Navigation