Skip to main content

Advertisement

Log in

Biosorption of cadmium ions using Pleurotus ostreatus: Growth kinetics, isotherm study and biosorption mechanism

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The mycelial growth kinetics, cadmium biosorption capacity and main governing biosorption mechanism of Pleurotus ostreatus (oyster mushroom) have been determined in this study. The fungus mycelium exhibits a sigmoidal (S-shaped) growth curve in which the growth rates for the lag and exponential phases are 0.1 and 0.31 g/L·day, respectively. The grown fungus is subjected to elemental, infra-red and scanning electron microscopy-energy dispersive x-ray spectroscopy analyses, while biosorption data are fitted to established adsorption isotherm models, namely, Langmuir, Freundlich and Dubinin-Radushkevich. It is strongly suggested that the main governing mechanism involved is chemisorption due to good fitting of biosorption data to Langmuir and Dubinin-Radushkevich models with possibility of involvement of both ion exchange and complexation. Data presented in the study are very useful for design of future pilot- or industrial-scale biosorption water purification systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Romera, F. Gonzalez, A. Ballester, M. L. Blazquez and J. A. Munoz, Biores. Technol., 98, 3344 (2007).

    Article  CAS  Google Scholar 

  2. K. C. Bhainsa and S. F. D’souza, Biores. Technol., 99, 3829 (2007).

    Article  Google Scholar 

  3. Z. Xuan, Y. Tang, X. Li, Y. Liu and F. Luo, Biochem. Eng. J., 31, 160 (2006).

    Article  CAS  Google Scholar 

  4. D. P. Mungasavalli, T. Viraraghavan and Y. C. Jin, Colloids Surf. A, 301, 214 (2007).

    Article  CAS  Google Scholar 

  5. R. Kumar, N. R. Bishnoi, Garima and K. Bishnoi, Chem. Eng. J., 135, 202 (2008).

    Article  CAS  Google Scholar 

  6. M. J. Melgar, J. Alonso and M. A. García, Sci. Total Environ., 385, 12 (2007).

    Article  CAS  Google Scholar 

  7. M.G. Peter and U. Wollenberger, in: Frontiers in biosensorics, F.W. Scheller, F. Schubert and J. Fedrowitz Eds., Birkhäuser, Basel (1997).

    Google Scholar 

  8. X. Pan, J. Wang and D. Zhang, Proc. Biochem., 40, 2799 (2005).

    Article  CAS  Google Scholar 

  9. X. Pan, J. Wang and D. Zhang, Inter. J. Environ. Poll., 37, 289 (2009).

    Article  CAS  Google Scholar 

  10. J.-Z. Wu, P. C. K. Cheung, K.-H. Wong and N.-L. Huang, Food Chem., 81, 389 (2003).

    Article  CAS  Google Scholar 

  11. I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).

    Article  CAS  Google Scholar 

  12. H. Freundlich, Phys. Chem. Soc., 40, 1361 (1906).

    Google Scholar 

  13. M.D. Mashitah, Y. Yus-Azila and S. Bhatia, Biores. Technol., 99, 4742 (2008).

    Article  CAS  Google Scholar 

  14. G. Yan and T. Viraraghavan, Water Res., 37, 4486 (2003).

    Article  CAS  Google Scholar 

  15. M. M. Dubinin and L. V. Radushkevich, Proc. Acad. Sci. Phys. Chem. Sect. USSR, 55, 331 (1947).

    Google Scholar 

  16. H. Arslanoglu, H. S. Altundogan and F. Tumen, J. Hazard. Mater., 164, 1406 (2009).

    Article  CAS  Google Scholar 

  17. J. P. Hobson, J. Phys. Chem., 73, 2720 (1969).

    Article  CAS  Google Scholar 

  18. F. Helfferich, Ion exchange, McGraw-Hill, New York (1962).

    Google Scholar 

  19. G. Chen, G. Zeng, L. Tang, C. Du, X. Jiang, G. Huang, H. Liu and G. Shen, Biores. Technol., 99, 7034 (2008).

    Article  CAS  Google Scholar 

  20. H. Ginterova and H. Maxianova, Folia Microbiol., 20, 246 (1975).

    Article  CAS  Google Scholar 

  21. M. Bhanoori and G. Venkateswerlu, Biochim. Biophys. Acta, 1523, 21 (2000).

    CAS  Google Scholar 

  22. B.Y. M. Bueno, M. L. Torem, F. Molina and L. M. S. Mesquita, Miner. Eng., 21, 65 (2008).

    Article  CAS  Google Scholar 

  23. G. Olivieri, A. Marzocchella, P. Salatino, P. Giardina, G. Cennamo and G. Sannia, Biochem. Eng. J., 31, 180 (2006).

    Article  CAS  Google Scholar 

  24. L. Svecova, M. Spanelova, M. Kubal and E. Guibal, Sep. Purif. Technol., 52, 142 (2006).

    Article  CAS  Google Scholar 

  25. Salony, S. Mishra and V. S. Bisaria, Appl. Microbiol. Biotechnol., 71, 646 (2006).

    Article  CAS  Google Scholar 

  26. G. Bayramoglu and M.Y. Arica, Chem. Eng. J., 143, 133 (2008).

    Article  CAS  Google Scholar 

  27. T. Akar, Z. Kaynak, S. Ulusoy, D. Yuvaci, G. Ozsari and S. T. Akar, J. Hazard. Mater., 163, 1134 (2009).

    Article  CAS  Google Scholar 

  28. D. L. Pavia, G. M. Lampman and G. S. Kriz, Introduction to spectroscopy: A guide for students of organic chemistry, Saunders, New York (1996).

    Google Scholar 

  29. M. Fereidouni, A. Daneshi and H. Younesi, J. Hazard. Mater., 168, 1437 (2009).

    Article  CAS  Google Scholar 

  30. G. Li, P. Xue, C. Yan and Q. Li, Korean J. Chem. Eng., 27, 1239 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Yang Yin.

Additional information

To be included as footnote: Experimental studies presented in this article were undertaken at Faculty of Civil Engineering, Universiti Teknologi MARA, Malaysia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tay, C.C., Liew, H.H., Yin, CY. et al. Biosorption of cadmium ions using Pleurotus ostreatus: Growth kinetics, isotherm study and biosorption mechanism. Korean J. Chem. Eng. 28, 825–830 (2011). https://doi.org/10.1007/s11814-010-0435-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0435-9

Key words

Navigation