Skip to main content
Log in

Design considerations and economics of different shaped surface aeration tanks

  • Energy and Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This paper deals with the design considerations of surface aeration tanks on two basic issues of oxygen transfer coefficient and power requirements for the surface aeration system. Earlier developed simulation equations for simulating the oxygen transfer coefficient with theoretical power per unit volume have been verified by conducting experiments in geometrically similar but differently shaped and sized square tanks, rectangular tanks of length to width ratio (L/W) of 1.5 and 2 as well as circular tanks. Based on the experimental investigations, new simulation criteria to simulate actual power per unit volume have been proposed. Based on such design considerations, it has been demonstrated that it is economical (in terms of energy saving) to use smaller tanks rather than using a bigger tank to aerate the same volume of water for any shape of tanks. Among the various shapes studied, it has been found that circular tanks are more energy efficient than any other shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. S. Hu, J. Meier and D. I. C. Wang, Biotechnol. Bioeng., 27, 122 (1986).

    Article  Google Scholar 

  2. J.A. Gilbertson, A. Sen, L.A. Behie and M.K. Kallos, Biotechnol. Bioeng., 94, 783 (2006).

    Article  CAS  Google Scholar 

  3. A. R. K. Rao, J. Environ. Engg., 125, 215 (1999).

    Article  CAS  Google Scholar 

  4. K. Saravanan and J.B. Joshi, Can. J. Chem. Eng., 74, 16 (1996).

    CAS  Google Scholar 

  5. A. R. K. Rao, B. V. B. Laxmi and K. S. Narasiah, Water Qual. Res. J. Canada, 39, 273 (2004).

    Google Scholar 

  6. A. R. K. Rao, B. Kumar and A. K. Patel, Water Qual. Res. J. Canada, 42, 26 (2007).

    CAS  Google Scholar 

  7. R. L. King, R. A. Hiller and G. B. Tatterson, AIChE J., 34, 506 (1988).

    Article  CAS  Google Scholar 

  8. A.W. Nienow and J. J. Ulbrecht, Mixing of liquids by mechanical agitation, Gordon and Breach Sci. Publications, New York (1985).

    Google Scholar 

  9. S. L. Udaya, K. V. N. S. Sharma and A.R.K. Rao, Proc. Symp. on Environmental Hydraulics, University of Honkong, 1577 (1991).

  10. J.R. McWhirter, J. Chern and J.C. Hutter, Ind. Eng. Chem. Res., 34, 2644 (1995).

    Article  CAS  Google Scholar 

  11. V. Mahendraker, D. S. Mavinic and J.K. Hall, J. Environ. Engg., 131, 692 (2005).

    Article  CAS  Google Scholar 

  12. B. Deng and C. N. Kim, Korean J. Chem. Eng., 20, 685 (2003).

    Article  CAS  Google Scholar 

  13. I. Y. Kim and S. D. Kim, Korean J. Chem. Eng., 7, 47 (1990).

    Article  CAS  Google Scholar 

  14. W.K. Lewis and W.G. Whitman, Ind. Eng. Chem., 16, 1215 (1924).

    Article  CAS  Google Scholar 

  15. R.B. Banks, L. R. Sally and C. Polprasert, J. Environ. Engg., 109, 232 (1983).

    Article  CAS  Google Scholar 

  16. C. J. Tzeng, R. Iranpour and M.K. Stenstrom, J. Environ. Engrg., 129, 402 (2003).

    Article  CAS  Google Scholar 

  17. WEF and ASCE Manual of practice for water pollution control, Aeration a waste water treatment process, Water Environment Federation, Alexandria, Va., and ASCE, New York (1988).

  18. Metcalf & Eddy, Waste water engineering: Treatment disposal and reuse, Tata McGraw-Hill, New Delhi (2004).

    Google Scholar 

  19. Standard methods for the examination of water and wastewater, 16th Edition, American Public Health Association, AWWA, WCPA, Washington, D.C. (1985).

  20. P. J. Roeleveld and M. C.M. Van Loosdrecht, Water Sci. Technol., 45, 77 (2002).

    CAS  Google Scholar 

  21. A.L. Cook and C. C. Carr, Elements of electrical engineering, Wiley, New York (1947).

    Google Scholar 

  22. P.C. Krause, O. Wasynczuk and S.D. Sudhoff, Analysis of electric machinery and drive systems, Wiley-IEEE Press (2002).

  23. J. L. Vasel, Contribution á l’étude des transferts d’oxygène en gestion des eaux, Ph.D. thesis, Fondation Universitaire Luxemourgeoise, Luxembourg, Arlon (1988).

    Google Scholar 

  24. H. J. Hwang and M. K. Stenstrom, J. WPCF, 57, 12 (1985).

    Google Scholar 

  25. G.M. Wesner, L. J. Ewing, T. S. Lineck and D. J. Hinrichs, Energy conservation in municipal wastewater treatment, EPA-430/9-77-01 1, NTIS No. PB81-165391, U.S. EPA Report, Washington, DC (1977).

  26. G.H. Vogel, Process development: From the initial idea to the chemical production plant, Wiley-VCH, Weinheim (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimlesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, A.R., Kumar, B. Design considerations and economics of different shaped surface aeration tanks. Korean J. Chem. Eng. 25, 1338–1343 (2008). https://doi.org/10.1007/s11814-008-0219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0219-7

Key words

Navigation