Skip to main content
Log in

A comparative study of different leaching processes for the extraction of Cu, Ni and Co from a complex matte

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The extraction behaviors of Cu, Ni and Co from a complex matte under different leaching conditions have been discussed. The synthetic Cu-Ni-Co-Fe-S matte was prepared by melting the pure metals. The matte contained 24.95% Cu, 35.05% Ni, 4.05% Co, 11.45% Fe, 24.5% S, similar composition as is expected to be obtained by reduction smelting of the Pacific Ocean nodules followed by sulphidisation of the alloy. The different phases identified are CuFeS2, CuS2, (FeNi)9S8, (FeNi)S2, Ni9S8, Ni3S2, (CoFeNi)9S8 and Co metal. The merits and demerits of each process of dissolution i.e., H2SO4/oxygen pressure leaching, atmospheric FeCl3 leaching, NH4OH/(NH4)2SO4 pressure leaching are discussed in detail. Out of the three, the H2SO4/oxygen pressure leaching process is found to be the most suitable with more than 99% metal extraction efficiency within 1 h of leaching time. From the X-ray diffraction analysis, the different undissolved phases corresponding to different leaching processes have been identified. The metal extraction efficiency decreased in case of atmospheric FeCl3 leaching and NH4OH/(NH4)2SO4 pressure leaching processes due to the formation of product layer such as elemental sulfur and goethite, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Rona, Science, 299, 673 (2003).

    Article  CAS  Google Scholar 

  2. D. W. Fuerstenau, A. P. Herring and M. Hoover, Trans. AIME, 254, 205 (1973).

    CAS  Google Scholar 

  3. D. W. Fuerstenau and K. N. Han, Miner. Process. Technol. Rev., 1, 1 (1983).

    Article  CAS  Google Scholar 

  4. D. J. Murray, T. W. Healy and D. W. Fuerstenau, Adv. Chem. Ser., 79, 74 (1968).

    Article  CAS  Google Scholar 

  5. R. G. Burns and V. M. Burns, Marine manganese deposits, G. P. Glasby, Ed., Elsevier, Amsterdam, pp. 185–248 (1977).

    Google Scholar 

  6. J. C. Agarwal, N. Becher, D. S. Davis, G. H. Hubred, V. K. Kakaria and R. N. Kust, J. Met., 28, 24 (1976).

    Google Scholar 

  7. P. T. Brooks and D. A. Martin, Processing of manganiferrous sea nodules, US Bur. Mines, IR 7473 (1971).

  8. R. K. Jana, B. D. Pandey and Premchand, Hydrometallurgy, 53, 45 (1999).

    Article  CAS  Google Scholar 

  9. W. S. Kane and P. H. Cardwell, Reduction method for separating metal values from ocean floor nodule ore, U.S. Patent 3,869,360 (1975).

  10. W. S. Kane, H. L. McCutchen and P. H. Cardwell, Recovery of metal values from ocean floor nodules by halidation in molten salt baths, U.S. Patent 3,894,927 (1975).

  11. S. B. Kanungo and P. K. Jena, Hydrometallurgy, 21, 41 (1988).

    Article  CAS  Google Scholar 

  12. K. N. Han and D. W. Fuerstenau, Int. J. Miner. Process., 2, 163 (1975).

    Article  CAS  Google Scholar 

  13. Y. Zhang, Q. Liu and C. Sun, Minerals Eng., 14, 525 (2001).

    Article  CAS  Google Scholar 

  14. R. Acharya, M. K. Ghosh, S. Anand and R. P. Das, Hydrometallurgy, 53, 169 (1999).

    Article  CAS  Google Scholar 

  15. A. Mukherjee, A. M. Raichur, J. M. Modak and K. A. Natarajan, Chemical Engineering and Processing, 44, 754 (2005).

    Article  CAS  Google Scholar 

  16. Copper Industry Participants Research Association (Tucson, AZ), “In-Site Mining of Copper Sulphides,” March, p. 150 (1991).

  17. J. E. Dutrizac, Can. Metall. Q. (Canada), 20, 307 (1981).

    CAS  Google Scholar 

  18. C. W. Nam, B. S. Kim and K. H. Park, The Korean Soc. Geosystem Eng., 40, 191 (2003).

    Google Scholar 

  19. C. W. Nam, K. H. Park and H. I. Kim, The Korean Soc. Geosystem Eng., 41, 413 (2004).

    Google Scholar 

  20. K. H. Park, D. Mohapatra and B. R. Reddy, Separation and Purification Technology, 51, 332 (2006).

    Article  CAS  Google Scholar 

  21. K. H. Park, D. Mohapatra, B. R. Reddy and C. W. Nam, Hydrometallurgy, 86, 164 (2007).

    Article  CAS  Google Scholar 

  22. T. Deng, Nickel and cobalt extraction by pressure hydrometallurgy. Proceedings of the international conference on mining and metallurgy of complex nickel ores, F. Chongyue, H. Huanhua and Z. Chuanfu, Eds., International Academic Publishers, Beijing, PRC, pp. 59–64 (1993).

    Google Scholar 

  23. X. Meng and K. N. Han, Mineral Processing and Extractive Metallurgy Review, 16, 23 (1996).

    Article  CAS  Google Scholar 

  24. K. S. Rao and H. S. Ray, Minerals Eng., 11, 1011 (1998).

    Article  CAS  Google Scholar 

  25. K. S. Rao, R. P. Das, P. G. Mukunda and H. S. Ray, Metallurgical Transactions B, 24B, 937 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasish Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, KH., Mohapatra, D., Nam, CW. et al. A comparative study of different leaching processes for the extraction of Cu, Ni and Co from a complex matte. Korean J. Chem. Eng. 24, 835–842 (2007). https://doi.org/10.1007/s11814-007-0050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-007-0050-6

Key words

Navigation