Skip to main content
Log in

Cavitation Predictions of E779A Propeller by a RANSE-based CFD and Its Performance Behind a Generic Hull

基于RANSE 模型CFD 预测E779A 型螺旋桨空化及其在通用船体后的水动力性能

  • Research Article
  • Published:
Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

Ship propulsion performance heavily depends on cavitation, increasing the recent interest in this field to lower ship emissions. Academic research on the effects of cavitation is generally based on the open-water propeller performance but the interactions of the cavitating propeller with the ship hull significantly affect the propulsion performance of the ship. In this study, we first investigate the INSEAN E779A propeller by a RANSE-based CFD in open-water conditions. The numerical implementation and the selected grid after sensitivity analysis partially succeeded in modeling the cavitating flow around the propeller. Satisfactory agreement was observed compared to experimental measurements. Then, using the open-water data as input, the propeller’s performance behind a full-scale ship was calculated under self-propulsion conditions. Despite being an undesired incident, we found a rare condition in which cavitation enhances propulsion efficiency. At σ = 1.5; the propeller rotation rate was lower, while the thrust and torque coefficients were higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alimirzazadeh S, Roshan SZ, Seif MS (2016) Experimental study on cavitation behavior of propellers in the uniform flow and in the wake field. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(6): 1585–1592. https://doi.org/10.1007/s40430-015-0353-1

    Google Scholar 

  • Can U, Delen C, Bal S (2020) Effective wake estimation of KCS hull at full-scale by GEOSIM method based on CFD. Ocean Engineering, 218, 108052. https://doi.org/10.1016/j.oceaneng.2020.108052

    Google Scholar 

  • Ebrahimi A, Razaghian AH, Tootian A, Seif MS (2021) An experimental investigation of hydrodynamic performance, cavitation, and noise of a normal skew B-series marine propeller in the cavitation tunnel. Ocean Engineering, 238, 109739. https://doi.org/10.1016/j.oceaneng.2021.109739

    Google Scholar 

  • Feng X, Lu J (2019) Effects of balanced skew and biased skew on the cavitation characteristics and pressure fluctuations of the marine propeller. Ocean Engineering, 184, 184–192. https://doi.org/10.1016/j.oceaneng.2019.05.031

    Google Scholar 

  • Gaggero S, Villa D (2018) Cavitating propeller performance in inclined shaft conditions with openfoam: PPTC 2015 test case. Journal of Marine Science and Application, 17(1): 1–20. https://doi.org/10.1007/s11804-018-0008-6

    Google Scholar 

  • Ge M, Svennberg U, Bensow RE (2020) Investigation on RANS prediction of propeller induced pressure pulses and sheet-tip cavitation interactions in behind hull condition. Ocean Engineering, 209, 107503. https://doi.org/10.1016/j.oceaneng.2020.107503

    Google Scholar 

  • Gokce MK, Kinaci OK, Alkan AD (2019) Self-propulsion estimations for a bulk carrier. Ships and Offshore Structures, 14(7): 656–663. https://doi.org/10.1080/17445302.2018.1544108

    Google Scholar 

  • Huang HB, Long Y, Ji B (2020) Experimental investigation of vortex generator influences on propeller cavitation and hull pressure fluctuations. Journal of Hydrodynamics, 32(1): 82–92. https://doi.org/10.1007/s42241-020-0005-5

    Google Scholar 

  • Hu J, Zhang W, Wang C, Sun S, Guo C (2021) Impact of skew on propeller tip vortex cavitation. Ocean Engineering, 220, 108479. https://doi.org/10.1016/j.oceaneng.2020.108479

    Google Scholar 

  • ITTC Specialist Committee on Hydrodynamic Noise (2017) Final Report and Recommendations to the 28th ITTC, 639–690

  • Kinaci OK, Gokce MK, Alkan AD, Kukner A (2018) On self-propulsion assessment of marine vehicles. Brodogradnja, 69(4), 29–51. https://doi.org/10.21278/brod69403

    Google Scholar 

  • Koksal ÇS, Usta O, Aktas B, Atlar M, Korkut E (2021) Numerical prediction of cavitation erosion to investigate the effect of wake on marine propellers. Ocean Engineering, 239: 109820. https://doi.org/10.1016/j.oceaneng.2021.109820

    Google Scholar 

  • Lee YH, Yang CY, Chow YC (2021) Evaluations of the outcome variability of RANS simulations for marine propellers due to tunable parameters of cavitation models. Ocean Engineering, 226, 108805. https://doi.org/10.1016/j.oceaneng.2021.108805

    Google Scholar 

  • Long Y, Long X, Ji B, Huang H (2019) Numerical simulations of cavitating turbulent flow around a marine propeller behind the hull with analyses of the vorticity distribution and particle tracks. Ocean Engineering, 189, 106310. https://doi.org/10.1016/j.oceaneng.2019.106310

    Google Scholar 

  • Pereira F, Salvatore F, Di Felice F (2004) Measurement and modeling of propeller cavitation in uniform inflow. J. Fluids Eng., 126(4), 671–679. https://doi.org/10.1115/1.1778716

    Google Scholar 

  • Regener PB, Mirsadraee Y, Andersen P (2018) Nominal vs effective wake fields and their influence on propeller cavitation performance. Journal of Marine Science and Engineering, 6(2): 34. https://doi.org/10.3390/jmse6020034

    Google Scholar 

  • Salvatore F, Pereira F, Felli M, Calcagni D, Di Felice F (2006) Description of the INSEAN E779A propeller experimental dataset. Technical Report INSEAN 2006-085 INSEAN-Italian Ship Model Basin. 10.5281=zenodo.6077997

  • Schnerr GH, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics. In Fourth International Conference on Multiphase Flow (Vol. 1) ICMF New Orleans

  • Sezen S, Atlar M (2022) An alternative vorticity based adaptive mesh refinement (V-AMR) technique for tip vortex cavitation modelling of propellers using CFD methods. Ship Technology Research, 69(1): 1–21. https://doi.org/10.1080/09377255.2021.1927590

    Google Scholar 

  • Sezen S, Atlar M, Fitzsimmons P (2021) Prediction of cavitating propeller underwater radiated noise using RANS & DES-based hybrid method. Ships and Offshore Structures, 16(sup1), 93–105. https://doi.org/10.1080/17445302.2021.1907071

    Google Scholar 

  • Stark C, Shi W, Troll M (2021) Cavitation funnel effect: Bio-inspired leading-edge tubercle application on ducted marine propeller blades. Applied Ocean Research, 116: 102864. https://doi.org/10.1016/j.apor.2021.102864

    Google Scholar 

  • Stern F, Wilson RV, Coleman HW, Paterson EG (1999) Verification and validation of CFD simulations. Iowa Inst of Hydraulic Research, Iowa City

    Google Scholar 

  • Tani G, Aktas B, Viviani M, Yilmaz N, Miglianti F, Ferrando M, Atlar M (2019) Cavitation tunnel tests for “The Princess Royal” model propeller behind a 2-dimensional wake screen. Ocean Engineering, 172: 829–843. https://doi.org/10.1016/j.oceaneng.2018.11.017

    Google Scholar 

  • Vaz G, Hally D, Huuva T, Bulten N, Muller P, Becchi P, Korsström A (2015) Cavitating flow calculations for the E779A propeller in open water and behind conditions: code comparison and solution validation. In Proceedings of the 4th International Symposium on Marine Propulsors (Vol. 31) Austin, TX, USA

  • Watanabe T, Kawamura T, Takekoshi Y, Maeda M, Rhee SH (2003) Simulation of steady and unsteady cavitation on a marine propeller using a RANS CFD code. In Proceedings of the Fifth International Symposium on Cavitation. Osaka, Japan, November 1–4, 2003

  • Yilmaz N, Dong X, Aktas B, Yang C, Atlar M, Fitzsimmons PA (2020a) Experimental and numerical investigations of tip vortex cavitation for the propeller of a research vessel, “The princess royal”. Ocean Engineering, 215, 107881. https://doi.org/10.1016/j.oceaneng.2020.107881

    Google Scholar 

  • Yilmaz N, Aktas B, Atlar M, Fitzsimmons PA, Felli M (2020b) An experimental and numerical investigation of propeller-rudder-hull interaction in the presence of tip vortex cavitation (TVC). Ocean Engineering, 216, 108024. https://doi.org/10.1016/j.oceaneng.2020.108024

    Google Scholar 

Download references

Acknowledgement

We thank Dr. Francesco Salvatore from INSEAN for providing the detailed experimental data of the propeller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir E. Belhenniche.

Additional information

Competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Article Highlights

• Numerical ship self-propulsion predictions do not generally include cavitation. However, cavitation may significantly alter propulsion characteristics of the ship.

• This study focuses on CFD predictions of cavitation for an open-water propeller.

• Numerical simulation results at different cavitation number and advance ratio are presented.

• Using simulation results as input, propulsion parameters are calculated for the behind-hull condition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizk, M.A., Belhenniche, S.E., Imine, O. et al. Cavitation Predictions of E779A Propeller by a RANSE-based CFD and Its Performance Behind a Generic Hull. J. Marine. Sci. Appl. 22, 273–283 (2023). https://doi.org/10.1007/s11804-023-00342-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-023-00342-w

Keywords

Navigation