Skip to main content
Log in

Parametric study of two-body floating-point wave absorber

  • Published:
Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter’s efficiency when considering specific conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves M, 2011. Wave to Wire Model Implementation. Wave Energy Centre, Portugal, Report, 1–71.

    Google Scholar 

  • Babarit A, Duclos G, Clément AH, 2004. Comparison of latching control strategies for a heaving wave energy device in random sea. Applied Ocean Research, 26, 227–238. DOI:10.1016/j.apor.2005.05.003

    Article  Google Scholar 

  • Backer GD, 2009. Hydrodynamic Design Optimization of Wave Energy Converters Consisting of Heaving Point Absorbers. Ghent University, Zwijnaarde, Belgium.

    Google Scholar 

  • Barbarit A, Clement A, 2006. Optimal latching control of a wave energy device in regular and irregular waves. Applied Ocean Research, 28, 77–91. DOI:10.1016/j.apor.2006.05.002

    Article  Google Scholar 

  • Beirao P, Malça C, 2014. Design and analysis of buoy geometries for a wave energy converter. International Journal of Energy and Environmental Engineering, 5, 1–11. DOI: 10.1007/s40095-014-0091-7

    Article  Google Scholar 

  • Bozzi S, Miquel A, Antonini A, Passoni G, Archetti R, 2013. Modeling of a Point Absorber for Energy Conversion in Italian Seas. Energies, 6, 3033–3051. DOI: 10.3390/en6063033

    Article  Google Scholar 

  • Budal K, Falnes J, 1978. Wave power conversion by point absorbers. Norwegian Maritime Research, 6(4), 2–11 Courtesy of Ocean Power Technologies, 2013. www.power-technology.com.

    Google Scholar 

  • Cruz J, 2008. Ocean Wave Energy: Current Status and Future Perspectives. Springer.

    Book  Google Scholar 

  • Drew B, Plummer AR, Sahinkaya MN, 2009. A review of wave energy converter technology. Proc Inst Mech Eng Part A: J. Power Energy, Sage Publications, London, England, 223, 887–902. DOI: 10.1243/09576509JPE782

    Article  Google Scholar 

  • Eriksson M, Isberg J, Leijon M, 2005. Hydrodynamic modelling of a direct drive wave energy converter. International Journal of Engineering Science, 43, 1377–1387. DOI:10.1016/j.ijengsci.2005.05.014

    Article  Google Scholar 

  • Falcão, A, 2010. Wave energy utilization: A review of the technologies. Renew Sustain Energy, Rev., 14, 899–918. DOI:10.1016/j.rser.2009.11.003

    Article  Google Scholar 

  • Falnes J, 1995. Principles for Capture of Energy from Ocean Waves. Phase Control and Optimum Oscilation. Technical Report, Institutt for fysikk, Norway.

    Google Scholar 

  • Falnes J, 2002. Ocean waves and oscillating systems: linear interactions including wave-energy extraction. Cambridge University Press, United Kingdom.

    Google Scholar 

  • Falnes J, 2007. A review of wave-energy extraction. Marine Structures, 20, 185–201. DOI: 10.1016/j.marstruc.2007.09.001

    Article  Google Scholar 

  • Fusco F, Ringwood J, 2011. Quanti_cation of the prediction requirements in reactive control of wave energy converters. Center for Ocean Energy Research National University of Ireland Maynooth, Ireland.

    Google Scholar 

  • Goggins J, Finnegan W, 2014. Shape optimisation of floating wave energy converters for a specified wave energy spectrum. Renew Energy, 71, 208–220. DOI: 10.1016/j.renene.2014.05.022

    Article  Google Scholar 

  • Iglesias G, Alvarez M, Garcia P, 2010. Wave Energy Converters, University of Santiago de Compostela, Hydrodynamic Eng. Encyclopedia Of Life and Support Systems (EOLSS), Available online at: www.eolss.net/sample-chapters/c08/E3-08-15.

    Google Scholar 

  • Journée JMJ, Massie WW, 2001. Offshore hydrodynamics. Delft University of Technology. Online course available at:ocw.tudelft.nl

    Google Scholar 

  • Kristiansen E, Hjulstad A, Egeland O, 2005. State-space representation of radiation forces in time-domain vessel models. Ocean Engineering, 32, 2195–2216.

    Article  Google Scholar 

  • McCormick ME, 2013. Ocean wave energy conversion. Courier Corporation. United States, ISBN: 9780486318165

    Google Scholar 

  • Nazari M, Ghassemi H, Ghiasi M, Sayehbani M, 2013. Design of the Point Absorber Wave Energy Converter for Assaluyeh Port n.d. Iranica Journal of Energy & Environment, 4, 130–135. DOI: 10.5829/idosi.ijee.2013.04.02.09

    Google Scholar 

  • Pastor J, Liu Y, 2014. Frequency and time domain modeling and power output for a heaving point absorber wave energy converter. International Journal of Energy and Environmental Engineering, 5, 1–13. DOI 10.1007/s40095-014-0101-9

    Article  Google Scholar 

  • Payne GS, Taylor JR, Bruce T, Parkin P, 2008. Assessment of boundary-element method for modelling a free-floating sloped wave energy device. Part 1: Numerical modelling. Ocean Engineering, 35, 333–341. DOI: 10.1016/j.oceaneng.2007.10.006

    Google Scholar 

  • Taghipour R, Perez T, Moan T, 2008. Hybrid frequency-time domain models for dynamic response analysis of marine structures. Ocean Engineering, 35, 685–705. DOI:10.1016/j.oceaneng.2007.11.002

    Article  Google Scholar 

  • Techet AH, 2005. Design principles for ocean vehicles. Massachusetts Institute of Technology, Department of Ocean Engineering. Online MIT university course available at: http://web.mit.edu/13.42/www/.

    Google Scholar 

  • Yu YH, Li Y, 2013. Reynolds-Averaged Navier–Stokes simulation of the heave performance of a two-body floating-point absorber wave energy system. Computer & Fluids, 73, 104–114. DOI:10.1016/j.compfluid.2012.10.007 Family name Given name abbreviation, Year. Paper title……

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roozbeh Panahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, A., Panahi, R. & Radfar, S. Parametric study of two-body floating-point wave absorber. J. Marine. Sci. Appl. 15, 41–49 (2016). https://doi.org/10.1007/s11804-016-1342-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-016-1342-1

Keywords

Navigation