Skip to main content
Log in

Transcriptome Analysis of Pacific White Shrimp (Litopenaeus vannamei) Under Prolonged High-Salinity Stress

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The Pacific white shrimp (Litopenaeus vannamei) is a marine species commonly farmed worldwide. In northern China, it has been increasingly cultured in high-salinity waters (>40), but exhibits poor growth performance. In this study, postlarval shrimps were acclimated to salinity 55, cultivated for 3 months at this salinity, and compared with a control group reared at general salinity 25. Subsequently, high-throughput RNA sequencing was applied to compare the transcriptomic responses in the gills and hepatopancreas of the shrimps in the control group and the treatment group, while the weights of the shrimps in these two groups were significantly different. The results revealed that 11834 and 2115 genes were significantly differentially expressed in the gills and hepatopancreas, respectively. Additionally, enrichment analysis of the differentially expressed genes indicated that osmoregulation-associated Gene Ontology terms and KEGG pathways were similar between the two subgroups of the shrimp maintained at high salinity, suggesting that the growth rate of shrimp at high salinity is independent of osmoregulation. Furthermore, examination of the shrimp with different growth rates (i.e., weights) at high salinity revealed molt-associated processes, namely, increased expression of ecdysone response genes and downstream effector genes in the gills and hepatopancreas of slow-growing shrimp, suggesting a role of the molt-associated processes in the regulation of shrimp growth at high salinity. Thus, we not only report adaptive transcriptomic responses of L. vannamei to prolonged high-salinity stress, but also provide new insights into the shrimp growth regulation at high salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Álvarez-Ruiz, P., Luna-González, A., Escamilla-Montes, R., Mejía-Ruiz, C. H., Magallón-Barajas, F. J., Llera-Herrera, R., et al., 2015. Longlasting effect against white spot syndrome virus in shrimp broodstock, Litopenaeus vannamei, by LvRab7 silencing. Journal of the World Aquaculture Society, 46 (6): 571–582, DOI: https://doi.org/10.1111/jwas.12236.

    Article  Google Scholar 

  • Bray, W. A., Lawrence, A. L., and Leung-Trujillo, J. R., 1994. The effect of salinity on growth and survival of Penaeus vannamei, with observation on interaction of IHHN virus and salinity. Aquaculture, 122: 133–146, DOI: https://doi.org/10.1016/0044-8486(94)90505-3.

    Article  Google Scholar 

  • Castilho, P. C., Martins, I. A., and Bianchini, A., 2001. Gill Na+,K+-ATPase and osmoregulation in the estuarine crab, Chasmagnathus granulata Dana, 1851 (Decapoda, Grapsidae). Journal of Experimental Marine Biology and Ecology, 256 (2): 215–227, DOI: https://doi.org/10.1016/S0022-0981(00)00315-4.

    Article  Google Scholar 

  • Charmantier, G., and Charmantier-Daures, M., 2001. Ontogeny of osmoregulation in crustaceans: The embryonic phase. American Zoologist, 41 (5): 1078–1089, DOI: https://doi.org/10.1093/icb/41.5.1078.

    Google Scholar 

  • Charmantier, G., Charmantier-Daures, M., and Towle, D., 2008. Osmotic and Ionic Regulation in Aquatic Arthropods in Osmotic and Ionic Regulation. CRC Press, Boca Raton, 165–230.

    Google Scholar 

  • Chen, C. J., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y. H., et al., 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13 (8): 1194–1202, DOI: https://doi.org/10.1016/j.molp.2020.06.009.

    Article  Google Scholar 

  • Chen, K., Li, E., Li, T., Xu, C., Wang, X., Lin, H., et al., 2015. Transcriptome and molecular pathway analysis of the hepatopancreas in the Pacific white shrimp Litopenaeus vannamei under chronic low-salinity stress. PLoS One, 10 (7): e0131503, DOI: https://doi.org/10.1371/journal.pone.0131503.

    Article  Google Scholar 

  • Chung, J. S., Maurer, L., Bratcher, M., Pitula, J. S., and Ogburn, M. B., 2012. Cloning of aquaporin-1 of the blue crab, Callinectes sapidus: Its expression during the larval development in hyposalinity. Aquatic Biosystems, 8 (1): 21, DOI: https://doi.org/10.1186/2046-9063-8-21.

    Article  Google Scholar 

  • Freire, C., Onken, H., and Mcnamara, J., 2008. A structure-function analysis of ion transport in crustacean gills and excretory organs. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 151 (3): 272–304, DOI: https://doi.org/10.1016/j.cbpa.2007.05.008.

    Article  Google Scholar 

  • Galindo-Torres, P. E., Ventura-López, C., Llera-Herrera, R., and Ibarra, A. M., 2019. A natural antisense transcript of the fem-1 gene was found expressed in female gonads during the characterization, expression profile, and cellular localization of the fem-1 gene in Pacific white shrimp Penaeus vannamei. Gene, 706: 19–31, DOI: https://doi.org/10.1016/j.gene.2019.04.066.

    Article  Google Scholar 

  • Gao, Y., Wei, J., Yuan, J., Zhang, X., Li, F., and Xiang, J., 2017 Transcriptome analysis on the exoskeleton formation in early developmetal stages and reconstruction scenario in growth-moulting in Litopenaeus vannamei. Scientific Reports, 7 (1): 1098, DOI: https://doi.org/10.1038/s41598-017-01220-6.

    Article  Google Scholar 

  • Gao, Y., Zhang, X., Wei, J., Sun, X., Yuan, J., Li, F., et al., 2015. Whole transcriptome analysis provides insights into molecular mechanisms for molting in Litopenaeus vannamei. PLoS One, 10 (12): e0144350, DOI: https://doi.org/10.1371/journal.pone.0144350.

    Article  Google Scholar 

  • Ge, Q., Li, J., Wang, J., Li, Z., and Li, J., 2019. Characterization, functional analysis, and expression levels of three carbonic anhydrases in response to pH and saline-alkaline stresses in the ridgetail white prawn Exopalaemon carinicauda. Cell Stress Chaperon, 24 (3): 503–515, DOI: https://doi.org/10.1007/s12192-019-00987-z.

    Article  Google Scholar 

  • Gibson, R., and Barker, P. L., 1979. The decapod hepatopancreas. Oceanography and Marine Biology, 17 (17): 285–346.

    Google Scholar 

  • Henry, R. P., 1987. Membrane-associated carbonic anhydrase in gills of the blue crab, Callinectes sapidus. American Journal of Physiology, 252: R966–71, DOI: https://doi.org/10.1152/ajpregu.1987.252.5.R966.

    Google Scholar 

  • Hooper, S. L., and Thuma, J. B., 2005. Invertebrate muscles: Muscle specific genes and proteins. Physiological Reviews, 85: 1001–1060, DOI: https://doi.org/10.1152/physrev.00019.2004.

    Article  Google Scholar 

  • Hu, D., Pan, L., Zhao, Q., and Ren, Q., 2015. Transcriptomic response to low salinity stress in gills of the Pacific white shrimp, Litopenaeus vannamei. Marine Genomics, 3: 297–304, DOI: https://doi.org/10.1016/j.margen.2015.07.003.

    Article  Google Scholar 

  • Huang, H. J., 1983. Factors affecting the successful culture of Penaeus tylirostris and Penaeus vannamei at an estuarine power plant site: Temperature, salinity, inherent growth variability, damselfly nymph redation, population density and distribution, and polyculture. PhD thesis. Texas A&M University.

  • Huang, Q. S., Yan, J. H., Tang, J. Y., Tao, Y. M., Xie, X. L., Wang, H., et al., 2010. Cloning and tissue expressions of seven chitinase family genes in Litopenaeus vannamei. Fish & Shellfish Immunology, 29: 75–81, DOI: https://doi.org/10.1016/j.fsi.2010.02.014.

    Article  Google Scholar 

  • Huang, Y., Liu, Z., Li, Y., Wu, D., Zhang, M., and Zhao, Y., 2019. Cloning and characterisation of Na+/K+-ATPase and carbonic anhydrase from oriental river prawn Macrobrachium nipponense. International Journal of Biological Macromolecules, 129: 809–817, DOI: https://doi.org/10.1016/j.ijbiomac.2019.02.098.

    Article  Google Scholar 

  • Huong, D. T. T., Yang, W. J., Okuno, A., and Wilder, M. N., 2001. Changes in free amino acids in the hemolymph of giant freshwater prawn Macrobrachium rosenbergii exposed to varying salinities: Relationship to osmoregulatory ability. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 128: 317–326, DOI: https://doi.org/10.1016/s1095-6433(00)00310-x.

    Article  Google Scholar 

  • Kim, D., Langmead, B., and Salzberg, S. L., 2015. Hisat: A fast spliced aligner with low memory requirements. Nature Methods, 12 (4): 357–360, DOI: https://doi.org/10.1038/nmeth.3317.

    Article  Google Scholar 

  • Koyama, H., Mizusawa, N., Hoashi, M., Tan, E., Yasumoto, K., Jimbo, M., et al., 2018. Changes in free amino acid concentrations and associated gene expression profiles in the abdominal muscle of kuruma shrimp (Marsupenaeus japonicus) acclimated at different salinities. Journal of Experimental Biology, 221: jeb168997, DOI: https://doi.org/10.1242/jeb.168997.

    Article  Google Scholar 

  • Kumaran, M., Anand, P. R., Kumar, J. A., Ravisankar, T., Paul, J., Vimala, D. D., et al., 2017. Is Pacific white shrimp (Penaeus vannamei) farming in India is technically efficient? — A comprehensive study. Aquaculture, 468: 262–270, DOI: https://doi.org/10.1016/j.aquaculture.2016.10.019.

    Article  Google Scholar 

  • Lago-Lestón, A., Ponce, E., and Munoz, M. E., 2007. Cloning and expression of hyperglycemic (CHH) and moltinhibiting (MIH) hormones mRNAs from the eyestalk of shrimps of Litopenaeus vannamei grown in different temperature and salinity conditions. Aquaculture, 270: 343–357, DOI: https://doi.org/10.1016/j.aquaculture.2007.04.014.

    Article  Google Scholar 

  • Leone, F. A., Lucena, M. N., Garçon, D. P., Pinto, M. R., and Mc-Namara, J. C., 2017. Gill Ion Transport ATPases and Ammonia Excretion in Aquatic Crustaceans. Springer, Switzerland, 61–107.

    Google Scholar 

  • Li, C., Li, N., Dong, T., Fu, Q., Cui, Y., and Li, Y., 2020. Analysis of differential gene expression in Litopenaeus vannamei under high salinity stress. Aquaculture Reports, 18: 100423, DOI: https://doi.org/10.1016/j.aqrep.2020.100423.

    Article  Google Scholar 

  • Li, E., Wang, X., Chen, K., Xu, C., Qin, J. G., and Chen, L., 2017a. Physiological change and nutritional requirement of Pacific white shrimp Litopenaeus vannamei at low salinity. Reviews in Aquaculture, 9 (1): 57–75, DOI: https://doi.org/10.1111/raq.12104.

    Article  Google Scholar 

  • Li, E. C., Arena, L., Chen, L. Q., Qin, J. G., and Wormhoudt, A. V., 2009. Characterization and tissue-specific expression of the two glutamate dehydrogenase cDNAs in Pacific white shrimp, Litopenaeus vannamei. Journal of Crustacean Biology, 29 (3): 379–386, DOI: https://doi.org/10.1651/08-3104.1.

    Article  Google Scholar 

  • Li, E. C., Arena, L., Lizama, G., Gaxiola, G., Cuzon, G., Rosas, C., et al., 2011. Glutamate dehydrogenase and Na+-K+ ATPase expression and growth response of Litopenaeus vannamei to different salinities and dietary protein levels. Chinese Journal of Oceanology and Limnology, 29: 343–349, DOI: https://doi.org/10.1007/s00343-011-0093-8.

    Article  Google Scholar 

  • Li, E. C., Wang, S. L., Li, C., Wang, X. D., Chen, K., and Chen, L. Q., 2014. Transcriptome sequencing revealed the genes and pathways involved in salinity stress of Chinese mitten crab, Eriocheir sinensis. Physiological Genomics, 46: 177–190, DOI: https://doi.org/10.1152/physiolgenomics.00191.2013.

    Article  Google Scholar 

  • Li, N., Wang, R. J., Zhao, Y. C., Shen, M., Su, W., Zhao, C., et al., 2017b. Effects of high salinity on growth index, plasma osmotic pressure and Na+-K+-ATPase activities of Litopenaeus vannamei. Journal of Zhejiang Ocean University (Natural Science), 36: 196–201 (in Chinese with English abstract).

    Google Scholar 

  • Liu, M., Liu, S., Hu, Y., and Pan, L., 2015. Cloning and expression analysis of two carbonic anhydrase genes in white shrimp Litopenaeus vannamei, induced by pH and salinity stresses. Aquaculture, 448: 391–400, DOI: https://doi.org/10.1016/j.aquaculture.2015.04.038.

    Article  Google Scholar 

  • Liu, Y., Wang, W. N., Wang, A. L., Wang, J. M., and Sun, R. Y., 2007. Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone, 1931) exposed to acute salinity changes. Aquaculture, 265: 351–358, DOI: https://doi.org/10.1016/j.aquaculture.2007.02.010.

    Article  Google Scholar 

  • Liu, Z., Zhou, Z., Wang, L., Li, M., Wang, W., Yi, Q., et al., 2018. Dopamine and serotonin modulate free amino acids production and Na+/K+ pump activity in Chinese mitten crab Eriocheir sinensis under acute salinity stress. Frontiers in Physiology, 9: 1080, DOI: https://doi.org/10.3389/fphys.2018.01080.

    Article  Google Scholar 

  • Livak, K. J., and Schmittgen, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods, 25: 402–408, DOI: https://doi.org/10.1006/meth.2001.1262.

    Article  Google Scholar 

  • Love, M. I., Huber, W., and Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15 (12): 1–21, DOI: https://doi.org/10.1186/s13059-014-0550-8.

    Article  Google Scholar 

  • Luquet, C. M., Weihrauch, D., Senek, M., and Towle, D. W., 2005. Induction of branchial ion transporter mRNA expression during acclimation to salinity change in the euryhaline crab Chasmagnathus granulatus. Journal of Experimental Biology, 208: 3627–3636, DOI: https://doi.org/10.1242/jeb.01820.

    Article  Google Scholar 

  • Lushchak, V. I., 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, 101 (1): 13–30, DOI: https://doi.org/10.1016/j.aquatox.2010.10.006.

    Article  Google Scholar 

  • Lv, J., Liu, P., Wang, Y., Gao, B., Chen, P., and Li, J., 2013. Transcriptome analysis of Portunus trituberculatus in response to salinity stress provides insights into the molecular basis of osmoregulation. PLoS One, 8 (12): e82155, DOI: https://doi.org/10.1371/journal.pone.0082155.

    Article  Google Scholar 

  • Mcnamara, J. C., and Faria, S. C., 2012. Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: A review. Journal of Comparative Physiology B, 182: 997–1014, DOI: https://doi.org/10.1007/s00360-012-0665-8.

    Article  Google Scholar 

  • Morris, S., 2001. Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans. Journal of Experimental Biology, 204: 979–989.

    Article  Google Scholar 

  • Navarrete del Toro, M. A., and García-Carreño, F., 2019. The toolbox for protein digestion in decapod crustaceans: A review. Reviews in Aquaculture, 11: 1005–1021, DOI: https://doi.org/10.1111/raq.12276.

    Article  Google Scholar 

  • Pan, L., Hu, D., Liu, M., Hu, Y., and Liu, S., 2016. Molecular cloning and sequence analysis of two carbonic anhydrase in the swimming crab Portunus trituberculatus and its expression in response to salinity and pH stress. Gene, 576: 347–357, DOI: https://doi.org/10.1016/j.gene.2015.10.049.

    Article  Google Scholar 

  • Pan, L., Liu, H., and Zhao, Q., 2014. Effect of salinity on the biosynthesis of amines in Litopenaeus vannamei and the expression of gill related ion transporter genes. Journal of Ocean University of China, 13: 453–459, DOI: https://doi.org/10.1007/s11802-014-2013-y.

    Article  Google Scholar 

  • Pante, M. J. R., 1990. Influence of environmental stress on the heritability of molting frequency and growth rate of the penaeid shrimp, Penaeus vannamei. Master thesis. University of Houston Clear Lake.

  • Pongsomboon, S., Udomlertpreecha, S., Amparyup, P., Wuthisuthimethavee, S., and Tassanakajon, A., 2009. Gene expression and activity of carbonic anhydrase in salinity stressed Penaeus monodon. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 152 (2): 225–233, DOI: https://doi.org/10.1016/j.cbpa.2008.10.001.

    Article  Google Scholar 

  • Ramos-Carreño, S., Valencia-Yáñez, R., Correa-Sandoval, F., Ruíz-García, N., Díaz-Herrera, F., and Giffard-Mena, I., 2014. White spot syndrome virus (WSSV) infection in shrimp (Litopenaeus vannamei) exposed to low and high salinity. Archives of Virology, 159 (9): 2213–2222, DOI: https://doi.org/10.1007/s00705-014-2052-0.

    Article  Google Scholar 

  • Relaix, F., and Zammit, P. S., 2012. Satellite cells are essential for skeletal muscle regeneration: The cell on the edge returns centre stage. Development, 139: 2845–2856, DOI: https://doi.org/10.1242/dev.069088.

    Article  Google Scholar 

  • Roer, R., Abehsera, S., and Sagi, A., 2015. Exoskeletons across the Pancrustacea: Comparative morphology, physiology, biochemistry and genetics. Integrative and Comparative Biology, 55 (5): 771–791, DOI: https://doi.org/10.1093/icb/icv080.

    Article  Google Scholar 

  • Romano, N., and Zeng, C., 2012. Osmoregulation in decapod crustaceans: Implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture, 334-337: 12–23, DOI: https://doi.org/10.1016/j.aquaculture.2011.12.035.

    Article  Google Scholar 

  • Saoud, I. P., Davis, D. A., and Rouse, D. B., 2003. Suitability studies of inland well waters for Litopenaeus vannamei culture. Aquaculture, 217: 373–383, DOI: https://doi.org/10.1016/S0044-8486(02)00418-0.

    Article  Google Scholar 

  • Shen, M., Zhao, Y., Ling, T., Wang, R., Dong, T., Cui, Y., et al., 2019. Effects of high-salt abrupt on growth and related enzyme activities in Litopenaeus vannamei. Oceanologia et Limnologia Sinica, 50: 204–209 (in Chinese with English abstract).

    Google Scholar 

  • Shinji, J., Kang, B. J., Okutsu, T., Banzai, K., Ohira, T., Tsutsui, N., et al., 2012. Changes in crustacean hyperglycemic hormones in Pacific whiteleg shrimp Litopenaeus vannamei subjected to air-exposure and low-salinity stresses. Fisheries Science, 78: 833–840, DOI: https://doi.org/10.1007/s12562-012-0514-4.

    Article  Google Scholar 

  • Silvia, G. J., Antonio, U. R. A., Francisco, V. O., and Georgina, H. W., 2004. Ammonia efflux rates and free amino acid levels in Litopenaeus vannamei postlarvae during sudden salinity changes. Aquaculture, 233: 573–581, DOI: https://doi.org/10.1016/j.aquaculture.2003.09.050.

    Article  Google Scholar 

  • Tiu, S. H., He, J. G., and Chan, S. M., 2007. The LvCHH-ITP gene of the shrimp (Litopenaeus vannamei) produces a widely expressed putative ion transport peptide (LvITP) for osmo-regulation. Gene, 396 (2): 226–235, DOI: https://doi.org/10.1016/j.gene.2007.02.027.

    Article  Google Scholar 

  • Trejo-Flores, J., Luna-González, A., Alvarez-Ruiz, P., Escamilla-Montes, R., Fierro-Coronado, J. A., Peraza-Gomez, V., et al., 2018. Immune-related gene expression in Penaeus vannamei fed Aloe vera. Latin American Journal of Aquatic Research, 46 (4): 756–764, DOI: https://doi.org/10.3856/vol46-issue4-fulltext-13.

    Article  Google Scholar 

  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., et al., 2002. Accurate normalization of realtime quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3: research0034–1, DOI: https://doi.org/10.1186/gb-2002-3-7-research0034.

    Article  Google Scholar 

  • Ventura-López, C., Galindo-Torres, P. E., Arcos, F. G., Galindo-Sánchez, C., Racotta, I. S., Escobedo-Fregoso, C., et al., 2016. Transcriptomic information from Pacific white shrimp (Litopenaeus vannamei) ovary and eyestalk, and expression patterns for genes putatively involved in the reproductive process. General and Comparative Endocrinology, 246: 164–182, DOI: https://doi.org/10.1016/j.ygcen.2016.12.005.

    Article  Google Scholar 

  • Wang, H., Tang, L., Wei, H., Lu, J., Mu, C., and Wang, C., 2018. Transcriptomic analysis of adaptive mechanisms in response to sudden salinity drop in the mud crab, Scylla paramamosain. BMC Genomics, 19 (1): 421, DOI: https://doi.org/10.1186/s12864-018-4803-x.

    Article  Google Scholar 

  • Wang, X. D., Wang, S. F., Li, C., Chen, K., Qin, J. G., Chen, L. Q., et al., 2015. Molecular pathway and gene responses of the Pacific white shrimp Litopenaeus vannamei to acute low salinity stress. Journal of Shellfish Research, 34 (3): 1037–1048, DOI: https://doi.org/10.2983/035.034.0330.

    Article  Google Scholar 

  • Xu, C., Li, E. C., Liu, Y., Wang, X. D., Qin, J. G., and Chen, L. Q., 2017. Comparative proteome analysis of the hepatopancreas from the Pacific white shrimp Litopenaeus vannamei under long-term low salinity stress. Journal of Proteomics, 162: 1–10, DOI: https://doi.org/10.1016/j.jprot.2017.04.013.

    Article  Google Scholar 

  • Yang, L., Smyth, G. K., and Wei, S., 2014. Featurecounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30 (7): 923–930, DOI: https://doi.org/10.1093/bioinformatics/btt656.

    Article  Google Scholar 

  • Yu, G., Wang, L. G., Han, Y., and He, Q. Y., 2012. Clusterprofiler: An R package for comparing biological themes among gene clusters. Omics, 16 (5): 284–287, DOI: https://doi.org/10.1089/omi.2011.0118.

    Article  Google Scholar 

  • Zhang, X., Yuan, J., Sun, Y., Li, S., Gao, Y., Yu, Y., et al., 2019. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nature Communications, 10: 356, DOI: https://doi.org/10.1038/s41467-018-08197-4.

    Article  Google Scholar 

  • Zhao, Q., Pan, L., Ren, Q., and Hu, D., 2015. Digital gene expression analysis in hemocytes of the white shrimp Litopenaeus vannamei in response to low salinity stress. Fish & Shellfish Immunology, 42 (2): 400–407, DOI: https://doi.org/10.1016/j.fsi.2014.11.020.

    Article  Google Scholar 

  • Zhao, S., and Fernald, R. D., 2005. Comprehensive algorithm for quantitative real-time polymerase chain reaction. Journal of Computational Biology, 12 (8): 1047–1064, DOI: https://doi.org/10.1089/cmb.2005.12.1047.

    Article  Google Scholar 

  • Zhao, Y., Wang, R., Shen, M., Cui, Y., Wang, S., Li, Y., et al., 2019. Effects of high-salt stress on daily weight gain, osmoregulation and immune related enzyme activities in Litopenaeus vannamei postlarvae. Journal of Fisheries of China, 43: 833–840 (in Chinese with English abstract).

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 31802269), the Open Fund of Shandong Key Laboratory of Disease Control in Mariculture (No. KF201901), the Shrimp & Crab Innovation Team of Shandong Agriculture Research System (No. SD AIT-15-011), the High-Level Talent Research Fund of Qingdao Agricultural University (Nos. 663/1119054 and 663/1120027), and the First Class Fishery Discipline Program in Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongkai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, Y., Cui, Y. et al. Transcriptome Analysis of Pacific White Shrimp (Litopenaeus vannamei) Under Prolonged High-Salinity Stress. J. Ocean Univ. China 21, 430–444 (2022). https://doi.org/10.1007/s11802-022-4882-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-022-4882-9

Key words

Navigation