Skip to main content
Log in

Properties and Anti-Ultraviolet Activity of Gallic Acid-Chitosan-Gelatin Mixed Gel

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Hydrogel has high water content and structural similarity with natural extracellular matrix. So it has been widely studied and applied in the field of biomedicine. In order to further develop multifunctional hydrogels, we prepared mixed gels with anti-ultraviolet properties. This study found that the addition of polysaccharides and polyphenols was beneficial to the rheological, mechanical properties, and biological activity of the protein. Chitosan (CS) could significantly improve the viscoelasticity, hardness, gel strength, thermal stability and crystallinity of gelatin. Interestingly, the addition of gallic acid (GA) could not only provide significant cross-linking effect, improve gel properties and microstructure, but also improve the UV resistance of the mixed gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aduba Jr., D. C., An, S. S., Selders, G. S., Yeudall, W. A., Bowlin, G. L., Kitten, T., et al., 2019. Electrospun gelatin-arabinoxylan ferulate composite fibers for diabetic chronic wound dressing application. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(11): 660–668.

    Article  Google Scholar 

  • Afshar, H. A., and Ghaee, A., 2016. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment. Carbohydrate Polymers, 151: 1120–1131.

    Article  Google Scholar 

  • Al-Sherbini, A. S. A., Ghannam, E. A., El-Ghanam, M. A., and Youssef, A. M., 2019. Utilization of chitosan/Ag bionanocomposites as eco-friendly photocatalytic reactor for bactericidal effect and heavy metals removal. Heliyon, 5(6): e01980.

    Article  Google Scholar 

  • Anvari, M., and Chung, D. H., 2016. Dynamic rheological and structural characterization of fish gelatin-gum Arabic coacervate gels cross-linked by tannic acid. Food Hydrocolloids, 60: 516–524.

    Article  Google Scholar 

  • Azeredo, H. M., and Waldron, K. W., 2016. Crosslinking in polysaccharide and protein films and coatings for food contact — A review. Trends in Food Science & Technology, 52: 109–122.

    Article  Google Scholar 

  • Bertolo, M. R., Martins, V. C., Horn, M. M., Brenelli, L. B., and Plepis, A. M., 2020. Rheological and antioxidant properties of chitosan/gelatin-based materials functionalized by pomegranate peel extract. Carbohydrate Polymers, 228: 115386.

    Article  Google Scholar 

  • Chen, C., Takahashi, K., Geonzon, L., Okazaki, E., and Osako, K., 2019. Texture enhancement of salted Alaska pollock (Theragra chalcogramma) roe using microbial transglutaminase. Food Chemistry, 290: 196–200.

    Article  Google Scholar 

  • Chu, L. L., Yang, L. C., Li, J. E., Lin, L. Z., and Zheng, G. D., 2019. Effect of Smilax china L. starch on the gel properties and interactions of calcium sulfate-induced soy protein isolate gel. International Journal of Biological Macromolecules, 135: 127–132.

    Article  Google Scholar 

  • Cui, L., Xiong, Z. H., Guo, Y., Liu, Y., Zhao, J. C., Zhang, C. J., et al., 2015. Fabrication of interpenetrating polymer network chitosan/gelatin porous materials and study on dye adsorption properties. Carbohydrate Polymers, 132: 330–337.

    Article  Google Scholar 

  • de Jong, S., van Vliet, T., and de Jongh, H. H., 2015. The contribution of time-dependent stress relaxation in protein gels to the recoverable energy that is used as a tool to describe food texture. Mechanics of Time-Dependent Materials, 19(4): 505–518.

    Article  Google Scholar 

  • Di Donato, P., Taurisano, V., Poli, A., d’Ayala, G. G., Nicolaus, B., Malinconinco, M., et al., 2020. Vegetable wastes derived polysaccharides as natural eco-friendly plasticizers of sodium alginate. Carbohydrate Polymers, 229: 115427.

    Article  Google Scholar 

  • Diez-Sales, O., Dolz, M., Hernandez, M. J., Casanovas, A., and Herraez, M., 2007. Rheological characterization of chitosan matrices: Influence of biopolymer concentration. Journal of Applied Polymer Science, 105(4): 2121–2128.

    Article  Google Scholar 

  • Ding, M. Z., Zhang, T., Zhang, H., Tao, N. P., Wang, X. C., and Zhong, J., 2020. Gelatin molecular structures affect behaviors of fish oil-loaded traditional and Pickering emulsions. Food Chemistry, 309: 125642.

    Article  Google Scholar 

  • El-Sayed, S. M., El-Sayed, H. S., Ibrahim, O. A., and Youssef, A. M., 2020. Rational design of chitosan/guar gum/zinc oxide bionanocomposites based on Roselle calyx extract for Ras cheese coating. Carbohydrate Polymers, 239: 116234.

    Article  Google Scholar 

  • Farris, S., Schaich, K. M., Liu, L., Cooke, P. H., Piergiovanni, L., and Yam, K. L., 2011. Gelatin-pectin composite films from polyion-complex hydrogels. Food Hydrocolloids, 25(1): 61–70.

    Article  Google Scholar 

  • Feng, S., Sun, Y., Wang, P., Sun, P., Ritzoulis, C., and Shao, P., 2019. Co-encapsulation of resveratrol and epigallocatechin gallate in low methoxyl pectin-coated liposomes with great stability in orange juice. International Journal of Food Science and Technology, 55(5): 1872–1880.

    Article  Google Scholar 

  • Hedayatnia, S., Tan, C. P., Kam, W. L. J., Tan, T. B., and Mirhosseini, H., 2019. Modification of physicochemical and mechanical properties of a new bio-based gelatin composite films through composition adjustment and instantizing process. LWT — Food Science and Technology, 116: 108575.

    Article  Google Scholar 

  • Hu, B., Chen, Q., Cai, Q. M., Fan, Y., Wilde, P. J., Rong, Z., et al., 2017. Gelation of soybean protein and polysaccharides delays digestion. Food Chemistry, 221: 1598–1605.

    Article  Google Scholar 

  • Huang, J. J., Zeng, S. W., Xiong, S. B., and Huang, Q. L., 2016. Steady, dynamic, and creep-recovery rheological properties of myofibrillar protein from grass carp muscle. Food Hydrocolloids, 61: 48–56.

    Article  Google Scholar 

  • Jin, R., Teixeira, L. M., Dijkstra, P. J., Karperien, M., Van Blitterswijk, C. A., Zhong, Z. Y., et al., 2009. Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials, 30(13): 2544–2551.

    Article  Google Scholar 

  • Kim, W. T., Chung, H., Shin, I. S., Yam, K. L., and Chung, D., 2008. Characterization of calcium alginate and chitosan-treated calcium alginate gel beads entrapping allyl isothiocyanate. Carbohydrate Polymers, 71(4): 566–573.

    Article  Google Scholar 

  • Li, W. Q., Wu, D. W., Hu, D., Zhu, S. S., Pan, C., Jiao, Y. P., et al., 2020. Stress-relaxing double-network hydrogel for chondrogenic differentiation of stem cells. Materials Science and Engineering: C, 107: 110333.

    Article  Google Scholar 

  • Li, X., Chen, S., Li, J. E., Wang, N., Liu, X., An, Q., et al., 2019. Chemical composition and antioxidant activities of polysaccharides from Yingshan Cloud Mist tea. Oxidative Medicine and Cellular Longevity, 2019: 1915967.

    Article  Google Scholar 

  • Lin, T. K., Zhong, L., and Santiago, J. L., 2018. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. International Journal of Molecular Sciences, 19(1): 70.

    Article  Google Scholar 

  • Liu, P. Y., and Zhen, W. J., 2018. Structure-property relationship, rheological behavior, and thermal degradability of poly (lactic acid)/fulvic acid amide composites. Polymers for Advanced Technologies, 29(8): 2192–2203.

    Article  Google Scholar 

  • Moon, J. H., Yoon, W. B., and Park, J. W., 2017. Assessing the textural properties of Pacific whiting and Alaska pollock surimi gels prepared with carrot under various heating rates. Food Bioscience, 20: 12–18.

    Article  Google Scholar 

  • Muhoza, B., Xia, S. Q., and Zhang, X. M., 2019. Gelatin and high methyl pectin coacervates crosslinked with tannic acid: The characterization, rheological properties, and application for peppermint oil microencapsulation. Food Hydrocolloids, 97: 105174.

    Article  Google Scholar 

  • Nadzharyan, T. A., Kostrov, S. A., Stepanov, G. V., and Kramarenko, E. Y., 2018. Fractional rheological models of dynamic mechanical behavior of magnetoactive elastomers in magnetic fields. Polymer, 142: 316–329.

    Article  Google Scholar 

  • Naidoo, K., Hanna, R., and Birch-Machin, M. A., 2018. What is the role of mitochondrial dysfunction in skin photoaging?. Experimental Dermatology, 27(2): 124–128.

    Article  Google Scholar 

  • Nair, S., Remya, N. S., Remya, S., and Nair, P. D., 2011. A biodegradable in situ injectable hydrogel based on chitosan and oxidized hyaluronic acid for tissue engineering applications. Carbohydrate Polymers, 85(4): 838–844.

    Article  Google Scholar 

  • Patel, A. R., Dumlu, P., Vermeir, L., Lewille, B., Lesaffer, A., and Dewettinck, K., 2015. Rheological characterization of gel-in-oil-in-gel type structured emulsions. Food Hydrocolloids, 46: 84–92.

    Article  Google Scholar 

  • Peng, X., and Yao, Y., 2018. Small-granule starches from sweet corn and cow cockle: Physical properties and amylopectin branching pattern. Food Hydrocolloids, 74: 349–357.

    Article  Google Scholar 

  • Petcharat, T., and Benjakul, S., 2018. Effect of gellan incorporation on gel properties of bigeye snapper surimi. Food Hydrocolloids, 77: 746–753.

    Article  Google Scholar 

  • Qian, Y., Zhong, X. W., Li, Y., and Qiu, X. Q., 2017. Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor. Industrial Crops and Products, 101: 54–60.

    Article  Google Scholar 

  • Quan, T. H., Benjakul, S., Sae-leaw, T., Balange, A. K., and Maqsood, S., 2019. Protein-polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends in Food Science & Technology, 91: 507–517.

    Article  Google Scholar 

  • Razmkhah, S., Razavi, S. M. A., and Mohammadifar, M. A., 2017. Dilute solution, flow behavior, thixotropy and viscoelastic characterization of cress seed (Lepidium sativum) gum fractions. Food Hydrocolloids, 63: 404–413.

    Article  Google Scholar 

  • Rui, L. Y., Xie, M. H., Hu, B., Zhou, L., Yin, D. Y., and Zeng, X. X., 2017. A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohydrate Polymers, 173: 473–481.

    Article  Google Scholar 

  • Sadeghifar, H., Venditti, R., Jur, J., Gorga, R. E., and Pawlak, J. J., 2016. Cellulose-lignin biodegradable and flexible UV protection film. ACS Sustainable Chemistry & Engineering, 5(1): 625–631.

    Article  Google Scholar 

  • Shao, P., Feng, J., Sun, P., and Ritzoulis, C., 2019. Improved emulsion stability and resveratrol encapsulation by whey protein/gum arabic interaction at oil-water interface. International Journal of Biological Macromolecules, 133: 466–472.

    Article  Google Scholar 

  • Shao, P., Niu, B., Chen, H. J., and Sun, P. L., 2017. Fabrication and characterization of tea polyphenols loaded pullulan-cmc electrospun nanofiber for fruit preservation. International Journal of Biological Macromolecules, 107: 1908–1914.

    Article  Google Scholar 

  • Shao, P., Zhang, H., Niu, B., and Jin, W., 2018. Physical stabilities of taro starch nanoparticles stabilized Pickering emulsions and the potential application of encapsulated tea polyphenols. International Journal of Biological Macromolecules, 118: 2032–2039.

    Article  Google Scholar 

  • Sow, L. C., Toh, N. Z. Y., Wong, C. W., and Yang, H., 2019. Combination of sodium alginate with tilapia fish gelatin for improved texture properties and nanostructure modification. Food Hydrocolloids, 94: 459–467.

    Article  Google Scholar 

  • Sun, Y., Liu, Z. L., Zhang, L. M., Wang, X. M., and Li, L., 2019. Effects of plasticizer type and concentration on rheological, physico-mechanical and structural properties of chitosan/zein film. International Journal of Biological Macromolecules, 143(1): 334–340.

    Google Scholar 

  • Tobin, D. J., 2017. Introduction to skin aging. Journal of Tissue Viability, 26(1): 37–46.

    Article  Google Scholar 

  • Wang, F. P., Pang, Y. N., Chen, G. B., Wang, W. W., and Chen, Z. M., 2020. Enhanced physical and biological properties of chitosan scaffold by silk proteins cross-linking. Carbohydrate Polymers, 229: 115529.

    Article  Google Scholar 

  • Wang, H. P., Gong, X. C., Miao, Y. L., Guo, X., Liu, C., Fan, Y. Y., et al., 2019a. Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles. Food Chemistry, 283: 397–403.

    Article  Google Scholar 

  • Wang, W. J., Jiang, L., Ren, Y. M., Shen, M. Y., and Xie, J. H., 2019b. Gelling mechanism and interactions of polysaccharides from Mesona blumes: Role of urea and calcium ions. Carbohydrate Polymers, 212: 270–276.

    Article  Google Scholar 

  • Wang, W. J., Shen, M. Y., Jiang, L., Song, Q. Q., Liu, S. C., Xie, M. Y., et al., 2019c. Rheological behavior, microstructure characterization and formation mechanism of Mesona blumes polysaccharide gels induced by calcium ions. Food Hydrocolloids, 94: 136–143.

    Article  Google Scholar 

  • Wang, W. J., Shen, M. Y., Liu, S. C., Jiang, L., Song, Q. Q., and Xie, J. H., 2018. Gel properties and interactions of Mesona blumes polysaccharide-soy protein isolates mixed gel: The effect of salt addition. Carbohydrate Polymers, 192: 193–201.

    Article  Google Scholar 

  • Wang, Y., Li, T., Ma, P. M., Bai, H. Y., Xie, Y., Chen, M. Q., et al., 2016. Simultaneous enhancements of UV-shielding properties and photostability of poly(vinyl alcohol) via incorporation of sepia eumelanin. ACS Sustainable Chemistry & Engineering, 4(4): 2252–2258.

    Article  Google Scholar 

  • Wu, C. H., Tian, J. H., Li, S., Wu, T. T., Hu, Y. Q., Chen, S. G., et al., 2016. Structural properties of films and rheology of film-forming solutions of chitosan gallate for food packaging. Carbohydrate Polymers, 146: 10–19.

    Article  Google Scholar 

  • Xiong, L., Ouyang, K. H., Jiang, Y., Yang, Z. W., Hu, W. B., Chen, H., et al., 2018. Chemical composition of Cyclocarya paliurus polysaccharide and inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophage. International Journal of Biological Macromolecules, 107: 1898–1907.

    Article  Google Scholar 

  • Youssef, A. M., Assem, F. M., and Abdel-Aziz, M. E., 2018. Development of bionanocomposite materials and its use in coating of Ras cheese. Food Chemistry, 270: 467–475.

    Article  Google Scholar 

  • Zhong, A. H., Qiu, P. Q., and Wang, D., 2002. Mechanism of protection from ultraviolet radiation (UVR) and product development thereof. Textile Auxiliaries, 3: 43–45.

    Google Scholar 

  • Zhuang, X. B., Jiang, X. P., Han, M. Y., Kang, Z. L., Zhao, L., Xu, X. L., et al., 2016. Influence of sugarcane dietary fiber on water states and microstructure of myofibrillar protein gels. Food Hydrocolloids, 57: 253–261.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31922072), the China Agriculture Research System (No. CARS-48), the Fundamental Research Funds for the Central Universities (No. 2019 41002), the Taishan Scholar Project of Shandong Province (No. tsqn201812020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangzhao Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Xue, C. & Mao, X. Properties and Anti-Ultraviolet Activity of Gallic Acid-Chitosan-Gelatin Mixed Gel. J. Ocean Univ. China 21, 204–212 (2022). https://doi.org/10.1007/s11802-022-4820-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-022-4820-x

Key words

Navigation