Skip to main content
Log in

Vibration Deformation Monitoring of Offshore Wind Turbines Based on GBIR

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In view of the disadvantages of vibration safety monitoring technology for offshore wind turbines, a new method is proposed to obtain deformation information of towering and dynamic targets in real-time by the ground-based interferometric radar (GBIR). First, the working principle and unique advantages of the GBIR system are introduced. Second, the offshore wind turbines in Rongcheng, Shandong Province are selected as the monitoring objects for vibration safety monitoring, and the GPRI-II portable radar interferometer is used for the health diagnosis of these wind turbines. Finally, the interpretation method and key processing flow of data acquisition are described in detail. This experiment shows that the GBIR system can accurately identify the millimeter-scale vibration deformation of offshore wind turbines and can quickly obtain overall time series deformation images of the target bodies, which demonstrate the high-precision deformation monitoring ability of the GBIR technology. The accuracy meets the requirements of wind turbine vibration monitoring, and the method is an effective spatial deformation monitoring means for high-rise and dynamic targets. This study is beneficial for the further enrichment and improvement of the technical system of wind turbine vibration safety monitoring in China. It also provides data and technical support for offshore power engineering management and control, health diagnosis, and disaster prevention and mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonello, G., Casagli, N., Farina, P., Leva, D., Nico, G., Sieber A. J., and Tarchi, D., 2004. Ground-based SAR interferometry for monitoring mass movements. Landslides, 1 (1): 21–28.

    Article  Google Scholar 

  • Bang, H., Kim, H., and Lee, K., 2012. Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors. International Journal of Precision Engineering and Manufacturing, 13 (12): 2121–2126.

    Article  Google Scholar 

  • Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E., 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40 (11): 2375–2383.

    Article  Google Scholar 

  • Bhalla, R., and Ling, H., 2014. Effect of wind turbine micro-Doppler on SAR and GMTI signatures. Radar Sensor Technology XVIII, International Society for Optics and Photonics. Maryland, 907716-1-10.

    Google Scholar 

  • Caduff, R., Wiesmann, A., Bühler, Y., and Pielmeier, C., 2015. Continuous monitoring of snowpack displacement at high spatial and temporal resolution with terrestrial radar interferometry. Geophysical Research Letters, 42: 813–820.

    Article  Google Scholar 

  • Casagli, N., Tibaldi, A., Merri, A., Del Ventisette, C., Apuani, T., Guerri, L., Fortuny-Guasch, J., and Tarchi, D., 2009. Deformation of Stromboli Volcano (Italy) during the 2007 eruption revealed by radar interferometry, numerical modelling and structural geological field data. Journal of Volcanology and Geothermal Research, 182 (3–4): 182–00.

    Article  Google Scholar 

  • Chen, J. D., and Wang, J., 2014. Development status, trends and prospects of offshore wind power in some foreign countries. World Sci-Tech R&D, 36 (4): 458–464.

    Google Scholar 

  • Costantini, M., 1998. A novel phase unwrapping method based on network programming. IEEE Transactions on Geoscience and Remote Sensing, 36 (3): 813–821.

    Article  Google Scholar 

  • Ferrentino, E., Nunziata, F., Marino, A., Migliaccio, M., and Li, X., 2019. Detection of wind turbines in intertidal areas using SAR polarimetry. IEEE Geoscience and Remote Sensing Letters, 16 (10): 1516–1520.

    Article  Google Scholar 

  • Ferretti, A., Prati, C., and Rocca, F., 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38 (5): 2202–2212.

    Article  Google Scholar 

  • Griffith, D. T., Mayes, R. L., and Hunter, P. S., 2010. Excitation methods for a 60 kW vertical axis wind turbine. Structural Dynamics and Renewable Energy, 1: 329–338.

    Google Scholar 

  • Guo, W., Wang, G. Q., Bao, Y., Zhang, M. J., Sun, X. H., Zhao, R. B., and Gan, W. J., 2020. Tilt and settlement monitoring of high-rise building using GNSS precise point positioning and seasonal ground deformation. Geomatics and Information Science of Wuhan University, 45 (7): 1043–1051.

    Google Scholar 

  • Hooper, A., Segall, P., and Zebker, H., 2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112: B07407.

    Article  Google Scholar 

  • Hu, J., Li, Z. W., Ding, X. L., Zhu, J. J., Zhang, L., and Sun, Q., 2014. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Science Reviews, 133: 1–17.

    Article  Google Scholar 

  • Intrieri, E., Gigli, G., Nocentini, M., Lombardi, L., Mugnai, F., and Casagli, N., 2015. Sinkhole monitoring early warning an experimental and successful GB-InSAR application. Geomorphology, 241: 304–314.

    Article  Google Scholar 

  • Jáuregui, D. V., White, K. R., Woodward, C. B., and Leitch, K. R., 2003. Noncontact photogrammetric measurement of vertical bridge deflection. Journal of Bridge Engineering, 8 (4): 212–222.

    Article  Google Scholar 

  • Ko, J. M., and Ni, Y. Q., 2005. Technology developments in structural health monitoring of large-scale bridges. Engineering Structures, 27 (12): 1715–1725.

    Article  Google Scholar 

  • Lazecky, M., Hlavacova, I., Bakon, M., Sousa, J. J., Perissin, D., and Patricio, G., 2016. Bridge displacements monitoring using space-borne X-band SAR interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10: 205–210.

    Article  Google Scholar 

  • Leva, D., Nico, G., Tarchi, D., Fortuny-Guasch, J., and Sieber, A. J., 2003. Temporal analysis of a landslide by means of a ground-based SAR interferometer. IEEE Transactions and Geoscience Remote Sensing, 41 (4): 745–752.

    Article  Google Scholar 

  • Li, J. H., 2016. Research on GB-InSAR deformation monitoring technology based on SFCW. Master thesis. University of Electronic Science and Technology of China.

  • Liu, Y., Wenhao, W., and Li, T., 2011. Power transmission tower monitoring technology based on TerraSAR-X products. International Symposium on Lidar and Radar Mapping 2011: Technologies and Applications. Nanjing, 8286: 82861E-1–82861E-7.

  • Ma, D. M., Li, Y. S., Cai, J. W., Li, B. Q., Liu, Y. X., and Chen, X. G., 2020. Real-time diagnosis of island landslides based on GB-RAR. Journal of Marine Science and Engineering, 8: 192.

    Article  Google Scholar 

  • Ma, D. M., Liu, Y. X., Xu, W. X., Wang, Y. B., and Gao, X. G., 2018. Monitoring process and key technology of GB-InSAR. Ocean Development and Management, 8: 81–85.

    Google Scholar 

  • Ma, J., 2010. Community structure and biodiversity of macrobenthos in Jiming Island of Weihai. Master thesis. Shandong Normal University.

  • Mário, V., Elsa, H., Miguel, A., Nuno, A., and Luís, R., 2018. Path discussion for offshore wind in Portugal up to 2030. Marine Policy, 100: 122–131.

    Google Scholar 

  • Monserrat, O., Crosetto, M., and Luzi, G., 2014. A review of ground-based SAR interferometry for deformation measurement. ISPRS Journal of Photogrammetry & Remote Sensing, 93: 40–48.

    Article  Google Scholar 

  • Nassif, H. H., Gindy, M., and Davis, J., 2005. Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration. NDT&E International, 38: 213–218.

    Article  Google Scholar 

  • Osgood, R., 2001. Dynamic characterization testing of wind turbines. National Renewable Energy Laboratory (NREL). Colorado, NREL/TP-500–30070.

    Book  Google Scholar 

  • Osgood, R., Bir, G., Mutha, H., Peeters, B., Luczak, M., and Sablon, G., 2010. Full-scale modal wind turbine tests: Comparing shaker excitation with wind excitation. Proceedings of the IMAC-XXVIII International Modal Analysis Conference (IMAC), Florida, USA, 113–124.

  • Ozbek, M., Rixen, D. J., Erne, O., and Sanow, G., 2010. Feasibility of monitoring large wind turbines using photogrammetry. Energy, 35: 4802–4811.

    Article  Google Scholar 

  • Peng, T., 2019. Monitoring and analysis on differential settlement of wind turbine foundation in an offshore wind farm. Hydropower and New Energy, 33 (2): 75–78.

    Google Scholar 

  • Pieraccini, M., 2013. Monitoring of civil infrastructures by interferometric radar: A review. The Scientific World Journal, 2013: 786961.

    Article  Google Scholar 

  • Pieraccini, M., Fratini, M., Parrini, F., and Atzeni, C., 2006. Dynamic monitoring of bridges using a high-speed coherent radar. IEEE Transactions on Geoscience and Remote Sensing, 44: 3284–3288.

    Article  Google Scholar 

  • Psimoulis, P. A., and Stiros, S. C., 2007. Measurement of deflections and of oscillation frequencies of engineering structures using Robotic Theodolites (RTS). Engineering Structures, 29: 3312–3324.

    Article  Google Scholar 

  • Qin, S. F., Li, W., and Sun, Y., 2017. Application study on fan power structure system safety monitoring. China Energy and Environmental Protection, 39 (10): 158–162.

    Google Scholar 

  • Rödelsperger, S., Becker, M., Gerstenecker, C., Läufer, G., Schilling, K., and Steineck, D., 2010. Digital elevation model with the ground-based SAR IBIS-L as basis for volcanic deformation monitoring. Journal of Geodynamics, 49 (3): 241–246.

    Article  Google Scholar 

  • Severin, J., Eberhardt, E., Leoni, L., and Fortin, S., 2014. Development and application of a pseudo-3D pit slope displacement map derived from ground-based radar. Engineering Geology, 181: 202–211.

    Article  Google Scholar 

  • Shi, Y. J., 2019. Application of 3D laser scanning technology in verticality detection of fan tower. Mine Surveying, 47 (2): 110–115.

    Google Scholar 

  • Sousa, J., and Bastos, L., 2013. Multi-temporal SAR interferometry reveals acceleration of bridge sinking before collapse. Natural Hazards & Earth System Sciences, 13 (3): 659–667.

    Article  Google Scholar 

  • Takahashi, K., Matsumoto, M., and Sato, M., 2013. Continuous observation of natural disaster-affected areas using ground-based SAR interferometry. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 6 (3): 1286–1294.

    Article  Google Scholar 

  • Tarchi, D., Antonello, G., Casagli, N., Farina, P., Fortuny-Guasch, J., Guerri, L., and Leva, D., 2005. On the use of ground-based SAR interferometry for slope failure early warning: The Cortenova rock slide (Italy). Landslides, 2005: 337–342.

    Article  Google Scholar 

  • Tarchi, D., Ohlmer, E., and Sieber, A., 1997. Monitoring of structural changes by radar interferometry. Research in Nondestructive Evaluation, 9: 213–225.

    Article  Google Scholar 

  • Turbide, S., Marchese, L., Terroux, M., and Bergeron, A., 2014. Synthetic aperture ladar concept for infrastructure monitoring. Proceedings of SPIE-The International Society for Optical Engineering, 2014: 92500B.

    Google Scholar 

  • Usai, S., 2001. A new approach for long term monitoring of deformations by differential SAR interferometry. PhD thesis. Delft University of Technology.

  • Voytenko, D., Dixon, T. H., Howat, I. M., Gourmelen, N., Lembke, C., Werner, C. L., De La Peña, S., and Oddsson, B., 2015. Multi-year observations of Breiöamerkurjökull, a marine-terminating glacier in southeastern Iceland, using terrestrial radar interferometry. Journal of Glaciology, 61: 42–54.

    Article  Google Scholar 

  • Wang, J. H., and Sui, J. W., 2016. Study on the method of wind power tower deformation monitoring. Modern Surveying and Mapping, 39 (6): 19–21.

    Google Scholar 

  • Wang, Z. X., Jiang, C. W., Ai, Q., and Wang, C. M., 2009. The key technology of offshore wind farm and its new development in China. Renewable and Sustainable Energy Reviews, 13 (1): 216–222.

    Article  Google Scholar 

  • Werner, C., Wiesmann, A., Strozzi, T., Kos, A., Caduff, R., and Wegmiuler, U., 2012. The GPRI multi-mode differential interferometric radar for ground-based observations. 9th European Conference on Synthetic Aperture Radar. Nuremberg, Germany, 304–307.

    Google Scholar 

  • Wong, K. Y., 2004. Instrumentation and health monitoring of cable-supported bridges. Structural Control Health Monitoring, 11 (2): 91–124.

    Article  Google Scholar 

  • Wu, X. N., Hu, Y., Li, Y., Yang, J., Duan, L., Wang, T. G., Adcock, T., Jiang, Z. Y., Gao, Z., Lin, Z. L., Borthwick, A., and Liao, S. J., 2019. Foundations of offshore wind turbines: A review. Renewable and Sustainable Energy Reviews, 104: 379–393.

    Article  Google Scholar 

  • Xie, H. Q., Yang, T., Xu, D. W., Qin, Y. Z., Lu, X., and Wang, C., 2017. Experimental study of the tilt of wind turbine tower using laser point cloud data. Bulletin of Surveying and Mapping, 2017 (12): 38–42.

    Google Scholar 

  • Xu, J. L., 2013. DPP-BOTDA based wind turbine blade fatigue monitoring technique and evaluation method. Master thesis. Harbin Institute of Technology.

  • Xu, Z. S., and Xia, M. M., 2011. Distance and similarity measures for hesitant fuzzy sets. Information Sciences, 181: 2128–2138.

    Article  Google Scholar 

  • Zeng, T., Deng, Y. K., Hu, C., and Tian, W. M., 2019. Development state and application examples of ground-based differential interferometric radar. Journal of Radars, 8 (1): 154–170.

    Google Scholar 

  • Zhang, B. C., Ding, X. L., Jiang, M., Zhang, B., Wu, S. B., and Liang, H. Y., 2016. Ground-based interferometric radar for dynamic deformation monitoring of the Ting Kau Bridge in Hong Kong. Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2016), Beijing, 6875–6878.

    Google Scholar 

  • Zhang, B. C., Ding, X. L., Werner, C., Tan, K., Zhang, B., Jiang, M., Zhao, J. W., and Xu, Y. L., 2018. Dynamic displacement monitoring of long-span bridges with a microwave radar interferometer. ISPRS Journal of Photogrammetry and Remote Sensing, 138: 252–264.

    Article  Google Scholar 

  • Zhang, L., Ding, X. L., and Lu, Z., 2011. Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions. ISPRS Journal of Photogrammetry & Remote Sensing, 66 (1): 146–152.

    Article  Google Scholar 

  • Zogg, H., and Ingensand, H., 2008. Terrestrial laser scanning for deformation monitoring-load tests on the felsenau via duct (CH). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, 555–562.

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Public Science and Technology Research Funds Projects of Ocean (No. 2014 05028), and the Scientific Research Project of Shandong Electric Power Engineering Consulting Institute Co., Ltd. (No. 2020-059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deming Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, D., Li, Y., Liu, Y. et al. Vibration Deformation Monitoring of Offshore Wind Turbines Based on GBIR. J. Ocean Univ. China 20, 501–511 (2021). https://doi.org/10.1007/s11802-021-4673-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-021-4673-8

Key words

Navigation