Skip to main content
Log in

Elevated Ducts and Low Clouds over the Central Western Pacific Ocean in Winter Based on GPS Soundings and Satellite Observation

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Both low clouds and elevated ducts are common phenomena in the oceanic atmosphere. Low clouds affect elevated ducts by changing the structure of atmospheric temperature and humidity. However, due to the limitation of met-ocean measurements, research on them is still scattered. This paper presents the distribution of elevated ducts and clouds over the central Western Pacific Ocean (WPO) based on Global Position System (GPS) sounding data and Himawari-8 satellite products from November 2015 to January 2016. Results show that the frequency of elevated ducts detected by ship-based GPS soundings was as high as 77% over the central WPO. The height and frequency of elevated ducts are closely related to the low clouds. If there are no clouds, the occurrence probability and mean base height of the elevated ducts are 14% and 730 m, respectively. By comparison, the occurrence probability and mean base height increase up to 24% and 1471 m, respectively, in the presence of cumulus (Cu) clouds, and 22% and 1511 m, respectively, in the presence of stratocumulus (Sc) clouds. Elevated ducts occur near the cloud top. The analysis of geopotential height and wind fields from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset (ERA-interim) shows that the study area is covered by a strong and stable subtropical high, and slowly sinking dry air masses inside the subtropical high are above the moist boundary-layer air mass. The appearance and evolution of low clouds will adjust the temperature and humidity structure of the lower troposphere. If there are no clouds, the marine boundary layer (MBL) is the classic mixed boundary layer. Humidity gradient and subsidence inversion are formed atop the mixed layer. When low clouds are present, long wave radiation and entrainment atop clouds form a strong temperature inversion and humidity gradient, which strengthen elevated ducts. However, when Sc clouds are decoupled, a weaker temperature inversion and humidity gradient may occur between the surface mixed layer and subcloud layer, leading to a weak elevated duct atop the mixed layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alappattu, D. P., Wang, Q., and Kalogiros, J., 2016. Anomalous propagation conditions over eastern Pacific Ocean derived from MAGIC data. Radio Science, 51(7): 1142–1156, https://doi.org/10.1002/2016RS005994.

    Article  Google Scholar 

  • Bean, B. R., and Dutton, E. J., 1968. Radio Meteorology. Dover Publication, New York, 435pp.

    Google Scholar 

  • Bessho, K., Date, K., Hayashi, M., Ikeda, A., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., and Sumida, Y., 2016. An introduction to Himawari-8/9-Japan’s new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan, 94(2): 151–183, https://doi.org/10.2151/jmsj.2016-009.

    Article  Google Scholar 

  • Carrillo, J., Guerra, J. C., Cuevas, E., and Barrancos, J., 2015. Characterization of the marine boundary layer and the trade-wind inversion over the sub-tropical North Atlantic. Boundary-Layer Meteorology, 158(2): 1–20, https://doi.org/10.1007/s10546-015-0081-1.

    Google Scholar 

  • Chen, S. S., and Houze, R. A., 1997. Interannual variability of deep convection over the tropical warm pool. Journal of Geophysical Research Atmospheres, 102(22): 25783–25795, https://doi.org/10.1029/97JD02238.

    Article  Google Scholar 

  • Cheng, Y. H., Zhou, S. Q., Wang, D. X., Lu, Y. Z., Huang, K., Yao, J. L., and You, X. B., 2016. Observed characteristics of atmospheric ducts over the South China Sea in autumn. Chinese Journal of Oceanology and Limnology, 34(3): 1–10, https://doi.org/10.1007/s00343-016-4275-2.

    Article  Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F., 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656): 553–597, https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  • Dinc, E., and Akan, O., 2014. Beyond-line-of-sight communications with ducting layer. IEEE Communications Magazine, 52(10): 37–43, https://doi.org/10.1109/MCOM.2014.6917399.

    Article  Google Scholar 

  • Ding, J. L., Fei, J. F., Huang, X. G., and Cheng, X. P., 2013. Observational occurrence of tropical cyclone ducts from GPS dropsonde data. Journal of Applied Meteorology and Climatology, 52(5): 1221–1236, https://doi.org/10.1175/JAMC-D-11-0256.1.

    Article  Google Scholar 

  • Freehafer, J. E., and Kerr, D. E., 1988. Tropospheric Refraction Propagation of Short Radio Wave. Peninsula Publishing, Gallipoli, Turkey, 162–163.

    Google Scholar 

  • Guo, X. M., Zhang, D. L., Hao, X. J., Lin, L., Zhang, Y. S., and Kang, S. F., 2016. IEEE 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE). Gulin, 213–215.

  • Haack, T., Wang, C., Garrett, S., Glazer, A., Mailhot, J., and Marshall, R., 2010. Mesoscale modeling of boundary layer refractivity and atmospheric ducting. Journal of Applied Meteorology and Climatology, 49(12): 2437–2457, https://doi.org/10.1175/2010JAMC2415.1.

    Article  Google Scholar 

  • Hermann, J. A., Kulessa, A. S., Lucas, C., Vincent, R. A., Hacker, J. M., and Ewenz, C. M., 2002. Impact of elevated atmospheric structures upon radio-refractivity and propagation. Proceedings of 4th the Workshop on the Applications of Radio Science. Leura, Australia, 20–22.

  • Horn, G. L., Ouwersloot, H. G., Arellano, J. V. G. D., and Sikma, M., 2015. Cloud shading effects on characteristic boundary-layer length scales. Boundary-Layer Meteorology, 157(2): 237–263, https://doi.org/10.1007/s10546-015-0054-4.

    Article  Google Scholar 

  • Johansson, C., Hennemuth, B., Bösenberg, J., Linné, H., and Smedman, A. S., 2005. Double-layer structure in the boundary layer over the Baltic Sea. Boundary-Layer Meteorology, 114(2): 389–412, https://doi.org/10.1007/s10546-004-1671-5.

    Article  Google Scholar 

  • Katzwinkel, J., Siebert, H., and Shaw, R. A., 2012. Observation of a self-limiting, shear-induced turbulent inversion layer above marine stratocumulus. Boundary-Layer Meteorology, 145(1): 131–143, https://doi.org/10.1007/s10546-011-9683-4.

    Article  Google Scholar 

  • Kim, C. K., and Yum, S. S., 2011. Marine boundary layer structure for the sea fog formation off the west coast of the Korean Peninsula. Pure and Applied Geophysics, 169(5–6): 1121–1135, https://doi.org/10.1007/s00024-011-0325-z.

    Google Scholar 

  • Laing, A., and Evans, J. L., 2011. An Introduction to Tropical Meteorology. In: The COMET Program. Second edition, University Corporation for Atmospheric Research, Boulder, Colo.

    Google Scholar 

  • Liu, S. Y., and Liang, X. Z., 2010. Observed diurnal cycle climatology of planetary boundary layer height. Journal of Climate, 23(21): 5790–5809, https://doi.org/10.1175/2010JCLI3552.1.

    Article  Google Scholar 

  • Lopez, P., 2009. A 5-yr 40-km-resolution global climatology of superrefraction for ground-based weather radars. Journal of Applied Meteorology and Climatology, 48(1): 89–110, https://doi.org/10.1175/2008jamc1961.1.

    Article  Google Scholar 

  • MacKellar, M. C., McGowan, H. A., Phinn, S. R., and Soderholm, J. S., 2013. Observations of surface energy fluxes and boundary-layer structure over Heron Reef, Great Barrier Reef, Australia. Boundary-Layer Meteorology, 146(2): 319–340, https://doi.org/10.1007/s10546-012-9767-9.

    Article  Google Scholar 

  • Manjula, G., Raman, M. R., Ratnam, M. V., Chandrasekhar, A. V., and Rao, S. V. B., 2016. Diurnal variation of ducts observed over a tropical station, Gadanki, using high resolution GPS radiosonde observations. Radio Science, 51(4): 247–258, https://doi.org/10.1002/2015RS005814.

    Article  Google Scholar 

  • Medeiros, B., Hall, A., and Stevens, B., 2005. What controls the mean depth of the PBL?. Journal of Climate, 18(16): 3157–3172, https://doi.org/10.1175/JCLI3417.1.

    Article  Google Scholar 

  • Nicholls, S., and Leighton, J., 1986. An observational study of the structure of stratiform cloud sheets: Part I. Structure. Quarterly Journal of the Royal Meteorological Society, 112(472): 431–460, https://doi.org/10.1002/qj.49711247209.

    Article  Google Scholar 

  • Prtenjak, M. T., Horvat, I., Tomažić, I., Kvakić, M., Viher, M., and Grisogono, B., 2015. Impact of mesoscale meteorological processes on anomalous radar propagation conditions over the northern Adriatic area. Journal of Geophysical Research, 120: 8759–8782, https://doi.org/10.1002/2014JD022626.

    Google Scholar 

  • Schubert, W. H., Ciesielski, P. E., Lu, C., and Johnson, R. H., 1995. Dynamical adjustment of the trade wind inversion layer. Journal of the Atmospheric Sciences, 52(16): 2941–2952, https://doi.org/10.1175/1520-0469(1995)0522.0.CO;2.

    Article  Google Scholar 

  • Shupe, M. D., Persson, P. O. G., Brooks, I. M., Tjernström, M., Sedlar, J., Mauritsen, T., Sjogren, S., and Leck, C., 2013. Cloud and boundary layer interactions over the Arctic sea ice in late summer. Atmospheric Chemistry and Physics, 13(18): 9379–9399, https://doi.org/10.5194/acpd-13-13191-2013.

    Article  Google Scholar 

  • Sinclair, V. A., Belcher, S. E., and Gray, S. L., 2010. Synoptic controls on boundary-layer characteristics. Boundary-Layer Meteorology, 134(3): 387–409, https://doi.org/10.1007/s10546-009-9455-6.

    Article  Google Scholar 

  • Song, X. Z., and Yu, L. S., 2013. How much net surface heat flux should go into the Western Pacific Warm Pool? Journal of Geophysical Research, 118(7): 3569–3585, https://doi.org/10.1002/jgrc.20246.

    Google Scholar 

  • Stevens, B., 2005. Atmospheric moist convection. Annual Review of Earth and Planetary Sciences, 33: 605–643, https://doi.org/10.1146/annurev.earth.33.092203.122658.

    Article  Google Scholar 

  • Stevens, B., Moeng, C. H., and Sullivan, P. P., 1999. Large-eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. Journal of the Atmospheric Sciences, 56(23): 3963–3984, https://doi.org/10.1175/1520-0469(1999)056<3963:lesord>2.0.co;2.

    Article  Google Scholar 

  • Turton, J. D., Bennetts, D. A., and Farmer, S. F. G., 1988. An introduction to radio ducting. Australian Meteorological Magazine, 117: 245–254.

    Google Scholar 

  • Viher, M., Prtenjak, M. T., and Grisogono, B., 2013. A multiyear study of the anomalous propagation conditions along the coast of the Adriatic Sea. Journal of Atmospheric and Solar-Terrestrial Physics, 97: 75–84, https://doi.org/10.1016/j.jastp.2013.01.014.

    Article  Google Scholar 

  • Wang, Q., Wendt, R. T., Wang, S., Cherrett, R. C., Rogers, T., and Yardim, C., 2016. Variability of index of refraction from Large Eddy Simulations. IEEE 2016 USNC-URSI Radio Science Meeting. Fajardo, Puerto Rico, 109–110.

  • Wood, R., 2012. Stratocumulus clouds. Monthly Weather Review, 140(8): 2373–2423, https://doi.org/10.1175/MWR-D-11-00121.1.

    Article  Google Scholar 

  • Wyant, M. C., Bretherton, C. S., Rand, H. A., and Stevens, D. E., 1997. Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. Journal of the Atmospheric Sciences, 54(1): 168–192, https://doi.org/10.1175/1520-0469(1997)0542.0.CO;2.

    Article  Google Scholar 

  • Yu, L., and Weller, R. A., 2007. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bulletin of the American Meteorological Society, 88(4): 527–540, https://doi.org/10.1175/bams-88-4-527.

    Article  Google Scholar 

  • Zhang, W. C., Guo, J. P., Miao, Y. C., Liu, H., Song, Y., Fang, Z., He, J., Lou, M. Y., Yan, Y., Li, Y., and Zhai, P. M., 2017. On the summer-time planetary boundary layer with different thermodynamic stability in China: A radiosonde perspective. Journal Climate, 31(4): 1451–1465, https://doi.org/10.1175/jcli-d-17-0231.1.

    Article  Google Scholar 

  • Zhao, X. F., Wang, D. X., Huang, S. X., Huang, K., and Chen, J., 2013. Statistical estimations of atmospheric duct over the South China Sea and the tropical eastern Indian Ocean. Chinese Science Bulletin, 58(23): 2794–2797, https://doi.org/10.1007/s11434-013-5942-8.

    Article  Google Scholar 

  • Zhu, M., and Atkinson, B. W., 2005. Simulated climatology of atmospheric ducts over the Persian Gulf. Boundary-Layer Meteorology, 115(3): 433–452, https://doi.org/10.1007/s10546-004-1428-1.

    Article  Google Scholar 

  • Ziemba, D. A., 2013. Ducting conditions for electromagnetic wave propagation in tropical disturbances from GPS dropsonde data. Master thesis. Department of Meteorology, Naval Postgraduate School.

Download references

Acknowledgements

This research work is supported by the National Natural Science Foundation of China (No. 41975008). The authors would like to thank the Department of Atmospheric Science of the University of Wyoming for providing island-based GPS sounding data. We are also grateful to the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Meteorological Satellite Center (MSC) of the Japan Meteorological Agency (JMA) for providing ERA-interim dataset and Himawari-8 satellite data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Sheng, L. & Wang, W. Elevated Ducts and Low Clouds over the Central Western Pacific Ocean in Winter Based on GPS Soundings and Satellite Observation. J. Ocean Univ. China 20, 244–256 (2021). https://doi.org/10.1007/s11802-021-4510-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-021-4510-0

Key words

Navigation