Skip to main content
Log in

Advancements and applications of position-sensitive detector (PSD): a review

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

This paper presents a review of the position-sensitive detector (PSD) sensor, covering different types of PSD and recent works related to this field. Furthermore, it explains the theoretical concepts and provides information about its structure and principles of operation. Moreover, it includes the main information about the available commercial PSDs from different companies, along with a comparison between the common modules. The PSD features include high position resolution, fast response, and a wide dynamic range. These features make it suitable for various fields and applications, such as imaging, spectrometry, spectroscopy and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NDJIONGUE A R, FERREIRA H C, NGATCHED T. Visible light communications (VLC) technology[M]//PROSKURNIKOV A, MING C. Wiley encyclopedia of electrical and electronics engineering. New York: Wiley, 2000.

    Google Scholar 

  2. HE C, CHEN C. A review of advanced transceiver technologies in visible light communications[J]. Photonics, 2023, 10(6): 648.

    Article  MathSciNet  Google Scholar 

  3. LIU Z, GUAN W, WEN S. Improved target signal source tracking and extraction method based on outdoor visible light communication using an improved particle filter algorithm based on Cam-Shift algorithm[J]. IEEE photonics journal, 2019, 11(6): 1–20.

    Google Scholar 

  4. DO T H, YOO M. An in-depth survey of visible light communication based positioning systems[J]. Sensors, 2016, 16(5): 678.

    Article  ADS  Google Scholar 

  5. BURCHARDT H, SERAFIMOVSKI N, TSONEV D, et al. VLC: beyond point-to-point communication[J]. IEEE communications magazine, 2014, 52(7): 98–105.

    Article  Google Scholar 

  6. LUO J, FAN L, LI H. Indoor positioning systems based on visible light communication: state of the art[J]. IEEE communications surveys & tutorials, 2017, 19(4): 2871–2893.

    Article  Google Scholar 

  7. CLĂIEAN A M, DIMIAN M. Current challenges for visible light communications usage in vehicle applications: a survey[J]. IEEE communications surveys & tutorials, 2017, 19(4): 2681–2703.

    Article  Google Scholar 

  8. SHEORAN S, GARG P, SHARMA P K. Location tracking for indoor VLC systems using intelligent photodiode receiver[J]. IET communications, 2018, 12(13): 1589–1594.

    Article  Google Scholar 

  9. KAYMAK Y, ROJAS-CESSA R, FENG J, et al. A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications[J]. IEEE communications surveys & tutorials, 2018, 20(2): 1104–1123.

    Article  Google Scholar 

  10. KONG M, KANG C H, ALKHAZRAGI O, et al. Survey of energy-autonomous solar cell receivers for satellite-air-ground-ocean optical wireless communication[J]. Progress in quantum electronics, 2020, 74: 100300.

    Article  Google Scholar 

  11. SCHMIDT C, HORWATH J. Wide-field-of-regard pointing, acquisition and tracking-system for small laser communication terminals[C]//2012 IEEE International Conference on Space Optical Systems and Applications (ICSOS), October 9–12, 2012, Ajaccio, France. New York: IEEE, 2012.

    Google Scholar 

  12. ABADI M M, COX M A, ALSAIGH R E, et al. A space division multiplexed free-space-optical communication system that can auto-locate and fully self-align with a remote transceiver[J]. Scientific reports, 2019, 9(1): 1–8.

    Article  Google Scholar 

  13. RAJ A B, MAJUMDER A K. Historical perspective of free space optical communications: from the early dates to today’s developments[J]. IET communications, 2019, 13(16): 2405–2419.

    Article  Google Scholar 

  14. DE-LA-LLANA-CALVO Á, LÁZARO-GALILEA J L, GARDEL-VICENTE A, et al. Indoor positioning system based on LED lighting and PSD sensor[C]//2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), September 30–October 3, 2019, Pisa, Italy. New York: IEEE, 2019: 1–8.

    Google Scholar 

  15. MCCALLEN D, PETRONE F, COATES J, et al. A laser-based optical sensor for broad-band measurements of building earthquake drift[J]. Earthquake spectra, 2017, 33(4): 1573–1598.

    Article  Google Scholar 

  16. ZHANG P, LIU J, YANG H, et al. Position measurement of laser center by using 2-D PSD and fixed-axis rotating device[J]. IEEE access, 2019, 7: 140319–140327.

    Article  Google Scholar 

  17. CUI S, SOH Y C. Linearity indices and linearity improvement of 2-D tetralateral position-sensitive detector[J]. IEEE transactions on electron devices, 2010, 57(9): 2310–2316.

    Article  ADS  Google Scholar 

  18. DWIK S, SOMASUNDARAM N. Modeling and simulation of two-dimensional position sensitive detector (PSD) sensor[J]. International journal of innovative technology and exploring engineering (IJITEE), 2019, 9(1): 744–753.

    Article  Google Scholar 

  19. KHALED T A, ELKHATIB M M, EL-SHERIF A. Design and simulation of an intelligent laser tracking system[J]. International journal of signal processing systems, 2016, 4(4): 328–333.

    Article  Google Scholar 

  20. HEWEAGE M F, WEN X, ELDAMARAWY A. Developing laser spot position determination circuit modeling and measurements with a quad detector[J]. International journal of modeling and optimization, 2016, 16(6): 310–316.

    Article  Google Scholar 

  21. IVAN I A, ARDELEANU M, LAURENT G J. High dynamics and precision optical measurement using a position sensitive detector (PSD) in reflection-mode: application to 2D object tracking over a smart surface[J]. Sensors, 2012, 12(12): 16771–16784.

    Article  ADS  Google Scholar 

  22. ROSENCHER E, VINTER B. Optoelectronics[M]. Cambridge: Cambridge University Press, 2002.

    Book  Google Scholar 

  23. ANDERSSON H. Position sensitive detectors: device technology and applications in spectroscopy[D]. Sundsvall: Mid Sweden University, 2008.

    Google Scholar 

  24. KIM J K, KIM M S, BAE J H, et al. Gap measurement by position-sensitive detectors[J]. Applied optics, 2000, 39(16): 2584–2591.

    Article  ADS  Google Scholar 

  25. SOLAL M, MÉNARD L, CHARON Y, et al. A silicon continuous position sensitive diode and associated electronics: modelling and simulation[J]. Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment, 2002, 477(1–3): 491–498.

    Article  ADS  Google Scholar 

  26. WANG X, YE M. Modeling and nonlinear correction of two-dimensional photoelectric position-sensitive detector[C]//Advanced Materials and Devices for Sensing and Imaging, October 14–18, 2002, Shanghai, China. Washington: SPIE, 2002: 452–460.

    Google Scholar 

  27. SOLAL M C. The origin of duo-lateral position-sensitive detector distortions[J]. Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment, 2007, 572(3): 1047–1055.

    Article  ADS  Google Scholar 

  28. RAHIMI M, LUO Y, HARRIS F C, et al. Improving measurement accuracy of position sensitive detector (PSD) for a new scanning PSD microscopy system[C]//Proceedings of 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), December 5–10, 2014, Bali, Indonesia. New York: IEEE, 2014: 1685–1690.

    Google Scholar 

  29. NIU F, LIU Z, O’NEIL D, et al. Study of a novel density well-logging tool using a position-sensitive detector[J]. Applied radiation and isotopes, 2019, 154: 108844.

    Article  Google Scholar 

  30. BERENS F, ELSER S, REISCHL M. Genetic algorithm for the optimal LiDAR sensor configuration on a vehicle[J]. IEEE sensors journal, 2021, 22(3): 2735–2743.

    Article  ADS  Google Scholar 

  31. DE-LA-LLANA-CALVO Á, LÁZARO-GALILEA J L, GARDEL-VICENTE A, et al. Weak calibration of a visible light positioning system based on a position-sensitive detector: positioning error assessment[J]. Sensors, 2021, 21(11): 3924.

    Article  ADS  Google Scholar 

  32. QU L, LIU J, DENG Y, et al. Analysis and adjustment of positioning error of PSD system for mobile SOF-FTIR[J]. Sensors, 2019, 19(23): 5081.

    Article  ADS  Google Scholar 

  33. MASSARI N, GONZO L, GOTTARDI M, et al. High speed digital CMOS 2D optical position sensitive detector[C]//Proceedings of the 28th European Solid-State Circuits Conference, September 24–26, 2002, Florence, Italy. New York: IEEE, 2002: 723–726.

    Google Scholar 

  34. MAKYNEN A, RAHKONEN T, KOSTAMOVAARA J. Digital optical position-sensitive detector (PSD)[C]//Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference, May 18–20, 2004, Como, Italy. New York: IEEE, 2004: 2358–2360.

    Google Scholar 

  35. KIMATA M. Trends in small-format infrared array sensors[C]//Proceedings of Sensors, November 3–6, 2013, Baltimore, MD, USA. New York: IEEE, 2013: 215–220.

    Google Scholar 

  36. TAKAHATA A, SHIMADA Y, YOSHIOKA F, et al. Infrared position sensitive detector (IRPSD)[C]//Proceedings Infrared Technology and Applications XXXIV, March 16–20, 2008, Orlando, Florida, USA. Washington: SPIE, 2008: 1002–1012.

    Google Scholar 

  37. TAKAHATA A, SHIMADA Y, YOSHIOKA F, et al. Improved infrared position sensitive detector[J]. IEEJ transactions on sensors and micromachines, 2009, 129(7): 215–220.

    Article  ADS  Google Scholar 

  38. KHAN M, YUKSEL M. Maintaining a free-space-optical communication link between two autonomous mobiles[C]//Proceedings of 2014 IEEE Wireless Communications and Networking Conference (WCNC), April 6–9, 2014, Istanbul, Turkey. New York: IEEE, 2008: 3154–3159.

    Google Scholar 

  39. ZEKAVAT S, BUEHRER R M, DURGIN G D, et al. An overview on position location: past, present, future[J]. International journal of wireless information networks, 2021, 28: 45–76.

    Article  Google Scholar 

  40. AL-AKKOUMI M K, REFAI H, SLUSS JR J J. A tracking system for mobile FSO[C]//Proceedings of Free-space Laser Communication Technologies XX, January 19–24, 2008, San Jose, California, USA. Washington: SPIE, 2008: 199–206.

    Google Scholar 

  41. HARRIS A, SLUSS J J, REFAI H H, et al. Alignment and tracking of a free-space optical communications link to a UAV[C]//Proceedings of 24th Digital Avionics Systems Conference, October 30–November 3, 2005, Washington, DC, USA. New York: IEEE, 2005: 1–C.

    Google Scholar 

  42. XU G, ZHONG Z, WANG B, et al. Design of PSD based solar direction sensor[C]//Proceedings of 6th International Symposium on Precision Mechanical Measurements, October 10, 2013, Guiyang, China. Washington: SPIE, 2013: 676–682.

    Google Scholar 

  43. JUQING Y, DAYONG W, WEIHU Z. Precision laser tracking servo control system for moving target position measurement[J]. Optik, 2017, 131: 994–1002.

    Article  ADS  Google Scholar 

  44. MALLICK K, MANDAL P, MUKHERJEE R, et al. Generation of 40 GHz/80 GHz OFDM based MMW source and the OFDM-FSO transport system based on special fine tracking technology[J]. Optical fiber technology, 2020, 54: 102130.

    Article  Google Scholar 

  45. DWIK S, SOMASUNDARAM N, AL MUSALLI T, et al. Simple LASER tracking algorithm using programmable system on chip (PSoC) for visible light communication (VLC)[J]. Optical memory and neural networks, 2022, 3: 296–308.

    Article  Google Scholar 

  46. GANESH N, SCHUTT K, NAYAK P K, et al. 2D position-sensitive hybrid-perovskite detectors[J]. ACS applied materials & interfaces, 2021, 13(45): 54527–54535.

    Article  Google Scholar 

  47. WANG W, LU J, NI Z. Position-sensitive detectors based on two-dimensional materials[J]. Nano research, 2021, 14: 1889–1900.

    Article  Google Scholar 

  48. WANG W H, DU R X, GUO X T, et al. Interfacial amplification for graphene-based position-sensitive-detectors[J]. Light: science & applications, 2017, 6(10): e17113.

    Article  Google Scholar 

  49. WANG W, YAN Z, ZHANG J, et al. High-performance position-sensitive detector based on graphene-silicon heterojunction[J]. Optica, 2018, 5(1): 27–31.

    Article  ADS  MathSciNet  Google Scholar 

  50. WANG W, LIU K, JIANG J, et al. Ultrasensitive graphene-Si position-sensitive detector for motion tracking[J]. InfoMat, 2020, 2(4): 761–768.

    Article  Google Scholar 

  51. LIU K, WANG W, YU Y, et al. Graphene-based infrared position-sensitive detector for precise measurements and high-speed trajectory tracking[J]. Nano letters, 2019, 19(11): 8132–8137.

    Article  ADS  Google Scholar 

  52. HU C, WANG X, MIAO P, et al. Origin of the ultrafast response of the lateral photovoltaic effect in amorphous MoS2/Si junctions[J]. ACS applied materials & interfaces, 2017, 9(21): 18362–18368.

    Article  Google Scholar 

  53. HAO L Z, LIU Y J, HAN Z D, et al. Giant lateral photovoltaic effect in MoS2/SiO2/Si pin junction[J]. Journal of alloys and compounds, 2018, 735: 88–97.

    Article  Google Scholar 

  54. ZHAO X, ZHANG L, GAI Q, et al. High-performance position-sensitive detector based on the lateral photovoltaic effect in MoSe2/p-Si junctions[J]. Applied optics, 2019, 58(19): 5200–5205.

    Article  ADS  Google Scholar 

  55. WANG X, ZHAO X, HU C, et al. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction[J]. Applied physics letters, 2016, 109(2): 023502.

    Article  ADS  Google Scholar 

  56. HAO L, LIU Y, HAN Z, et al. Large lateral photovoltaic effect in MoS2/GaAs heterojunction[J]. Nanoscale research letters, 2017, 12: 1–9.

    Article  ADS  Google Scholar 

  57. DWIK S, SASIKALA G, NATARAJAN S. Design and simulation of a reconfigurable multifunctional optical sensor[J]. Optical memory and neural networks, 2023, 32(2): 147–157.

    Article  Google Scholar 

  58. CHEN W, CHEN S H, LUO D. Development of a new signal processing system for pin-cushion position sensitive detector[J]. Applied mechanics and materials, 2015, 738: 93–96.

    Article  Google Scholar 

  59. SHIROKA T, RENZI R D, BUCCI C, et al. Position-sensitive detectors for muon spectroscopy: design goals, constraints and perspectives[J]. Physica B: condensed matter, 2006, 374: 494–497.

    Article  ADS  Google Scholar 

  60. DE-LA-LLANA-CALVO Á, LÁZARO-GALILEA J L, GARDEL-VICENTE A, et al. Analysis of multiple-access discrimination techniques for the development of a PSD-based VLP system[J]. Sensors, 2020, 20(6): 1717.

    Article  ADS  Google Scholar 

  61. HENRY J, LIVINGSTONE J. Thin-film amorphous silicon position-sensitive detectors[J]. Advanced materials, 2001, 13(12–13): 1022–1026.

    Article  Google Scholar 

  62. POPOV V. Advanced data readout technique for multianode position sensitive photomultiplier tube applicable in radiation imaging detectors[J]. Journal of instrumentation, 2011, 6(01): c01061.

    Article  ADS  Google Scholar 

  63. HENRY J, LIVINGSTONE J. Improved position sensitive detectors using high resistivity substrates[J]. Journal of physics D: applied physics, 2008, 41(16): 165106.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaher Dwik.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwik, S., Sasikala, G. & Natarajan, S. Advancements and applications of position-sensitive detector (PSD): a review. Optoelectron. Lett. 20, 330–338 (2024). https://doi.org/10.1007/s11801-024-3117-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-024-3117-2

Document code

Navigation