Skip to main content
Log in

Finite element simulation of Rayleigh surface acoustic wave in (100) AlN/(100) ZnO/diamond layered structure

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

With the rapid development of the fifth-generation (5G) wireless system, the explosive growth of transmitted data raises higher requirements for high-performance surface acoustic wave (SAW) devices as filters and duplexers. (100) AlN/(100) ZnO/diamond layered structures are theoretically simulated by finite element method (FEM) to investigate the Rayleigh SAW propagation properties, including phase velocity, electromechanical coupling coefficient K2, and temperature coefficient of frequency (TCF). Three types of layered structures with different interdigital transducers (IDTs) arrangements, which are IDTs/(100) AlN/(100) ZnO/diamond, (100) AlN/IDTs/(100) ZnO/diamond, and (100) AlN/(100) ZnO/IDTs/diamond structures, are considered in the simulations. The results show that the Sezawa mode exhibits larger K2 than the other modes. We found that the (100) AlN/IDTs/(100) ZnO/diamond structure exhibited better SAW properties, including high K2 and appropriate phase velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SU R, SHEN J, LU Z, et al. Wideband and low-loss surface acoustic wave filter based on 15° YX-LiNbO/SiO/Si structure[J]. IEEE electron device letters, 2021, 42(3): 438–441.

    Article  ADS  Google Scholar 

  2. SHEN J, FU S, SU R, et al. High-performance surface acoustic wave devices using LiNbO/SiO/SiC multilayered substrates[J]. IEEE transactions on microwave theory and techniques, 2021, 69(8): 3693–3705.

    Article  ADS  Google Scholar 

  3. KADOTA M, ISHII Y, TANAKA S. Surface acoustic wave resonators with hetero acoustic layer (HAL) structure using lithium tantalate and quartz[J]. IEEE transactions on ultrasonics ferroelectrics and frequency control, 2020, 68(5): 1955–1964.

    Article  Google Scholar 

  4. WU J B, ZHANG S B, CHEN Y, et al. Advanced surface acoustic wave resonators on LiTaO3/SiO2/sapphire substrate[J]. IEEE electron device letters, 2022, 43(10): 1748–1751.

    Article  ADS  Google Scholar 

  5. ZHANG H, WANG H. Investigation of surface acoustic wave propagation characteristics in new multilayer structure: SiO2/IDT/LiNbO3/diamond/Si[J]. Micromachines, 2021, 12(11): 1211–1286.

    Article  MathSciNet  Google Scholar 

  6. KOBAYASHI Y, TSUCHIYA T, OKAZAKI M, et al. High-frequency surface acoustic wave resonator with ScAlN/hetero-epitaxial diamond[J]. Diamond and related materials, 2021, 111(1): 108190.

    Article  ADS  Google Scholar 

  7. XIE B W, DING F Z, DONG Z B, et al. FEM analysis of piezoelectric film as IDT on the diamond substrate to enhance the quality factor of SAW devices[J]. Diamond and related materials, 2020, 102: 107659.

    Article  ADS  Google Scholar 

  8. LI M. High performance SAW resonators using Li-TaO3/SiO2/4H-SiC multilayer substrate[J]. IEEE electron device letters, 2022, 43(10): 1772–1775.

    Article  ADS  Google Scholar 

  9. SUZUKI M, KAKIO S. Analysis of leaky surface acoustic wave characteristics propagating on high piezoelectric ScAlN film/high velocity quartz substrate[J]. Japanese journal of applied physics, 2020, 59(SK): SKKC07.

    Article  Google Scholar 

  10. MOUSTAFA M, LAOUINI G, ALZOUBI T. Finite element analysis of SAW sensor with ZnO substrate for dichloromethane (DCM) gas detection[J]. Archives of acoustics: journal of Polish academy of sciences, 2021, 46(3): 419–426.

    Google Scholar 

  11. RO R, LEE R, LIN Z X, et al. Surface acoustic wave characteristics of a (100) ZnO/(100) AlN/diamond structure[J]. Thin solid films, 2013, 529: 470–474.

    Article  ADS  Google Scholar 

  12. QIAN L, LI C, LI M, et al. Theoretical investigation of surface acoustic wave propagation characteristics in periodic (AlN/ZnO)N/diamond multilayer structures[J]. Applied physics letters, 2014, 105(18): 183501.

    Article  ADS  Google Scholar 

  13. KVASHNIN G M, SOROKIN B P. Peculiarities of energy trapping of the UHF elastic waves in diamond-based piezoelectric layered structure. II. Lateral energy flow[J]. Ultrasonics, 2021, 111: 106311–106313.

    Article  Google Scholar 

  14. QIAN J, LI C P, QIAN L R, et al. Three-dimensional finite element simulation of love mode surface acoustic wave in layered structures including ZnO piezoelectric film and diamond substrate[J]. Diamond and related materials, 2018, 88: 123–128.

    Article  ADS  Google Scholar 

  15. WU S, LIN Z X, RO R, et al. Rayleigh and shear horizontal surface acoustic properties of (100) ZnO films on silicon[J]. IEEE transactions on ultrasonics ferroelectrics & frequency control, 2010, 57(5): 1237–1239.

    Article  Google Scholar 

  16. LIN Z X, WU S, RO R, et al. Surface acoustic wave properties of (100) AlN films on diamond with different IDT positions[J]. IEEE transactions on ultrasonics ferroelectrics & frequency control, 2009, 56(6): 1246–1251.

    Article  Google Scholar 

  17. HAKIKI M E, ELMAZRIA O, ASSOUAR M B, et al. ZnO/AlN/diamond layered structure for SAW devices combining high velocity and high electromechanical coupling coefficient[J]. Diamond & related materials, 2005, 14(3–7): 1175–1178.

    Article  ADS  Google Scholar 

  18. BRIZOUAL L L, ELMAZRIA O, ZHGOON S, et al. AlN/ZnO/diamond waveguiding layer acoustic wave structure: theoretical and experimental results[J]. IEEE transactions on ultrasonics ferroelectrics & frequency control, 2010, 57(8): 1818–1824.

    Article  Google Scholar 

  19. HAN X, WANG F, ZHANG K, et al. Effect on coupling coefficient of diamond-based surface acoustic wave devices using two layers of piezoelectric materials of different widths[J]. Diamond and related materials, 2022, 125: 125–128.

    Article  Google Scholar 

  20. CHEN Y P, ZHAO J X, YANG Y J, et al. Substrate removal structures for AlScN/diamond surface acoustic wave resonators[J]. Diamond and related materials, 2023, 133.

  21. HATASHITA K, TSUCHIYA T, OKAZAKI M, et al. High electro-mechanical coupling coefficient SAW device with ScAlN on diamond[J]. Japanese journal of applied physics, 2023, 62.

  22. CUI Y, DU G, ZHANG Y, et al. Growth of ZnO (002) and ZnO (100) films on GaAs substrates by MOCVD[J]. Journal of crystal growth, 2005, 282(34): 389–393.

    Article  ADS  Google Scholar 

  23. WANG H H. Properties of AlN (100) thin films prepared by reactive laser ablation[J]. Modern physics letters B, 2008, 15(24): 1069–1075.

    Article  ADS  Google Scholar 

  24. DAS A, RATH M, NAIR D R, et al. Realization of preferential (100) oriented AlN thin films on Mo coated Si substrate using reactive RF magnetron sputtering[J]. Applied surface science, 2021, 3: 149308.

    Article  Google Scholar 

  25. TIWARI C, DIXIT A. Highly textured (100)-oriented AlN thin films using thermal atomic layer deposition and their electrical properties[J]. Applied physics A, 2021, 127(11): 1–6.

    Article  Google Scholar 

  26. ZHANG Q, TAO H, TANG G, et al. SAW characteristics of AlN/SiO2/3C-SiC layered structure with embedded electrodes[J]. Ultrasonics symposium IEEE, 2015, 63(34): 1608–1612.

    Google Scholar 

  27. ZHOU C, YANG Y, CAI H, et al. Temperature-compensated high-frequency surface acoustic wave device[J]. IEEE electron device letters, 2013, 34(12): 1572–1574.

    Article  ADS  Google Scholar 

  28. LUO J T, QUAN A J, LIANG G X, et al. Love-mode surface acoustic wave devices based on multilayers of TeO2/ZnO (1120)/Si (100) with high sensitivity and temperature stability[J]. Ultrasonics, 2017, 75(75): 63–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lirong Qian or Cuiping Li.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

This work has been supported by the Research and Development Program in Significant Area of Guangdong Province (No.2020B0101040002), the Guangzhou Key Research & Development Program, Major Science and Technology Projects (No.202206070001), the National Natural Science Foundation of China (No.62271350), and the Natural Science Foundation of Tianjin (No.20JCZDJC00290).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Qian, J., Qian, L. et al. Finite element simulation of Rayleigh surface acoustic wave in (100) AlN/(100) ZnO/diamond layered structure. Optoelectron. Lett. 19, 732–738 (2023). https://doi.org/10.1007/s11801-023-3071-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-023-3071-4

Document code

Navigation