Skip to main content
Log in

Detection of dynamic strain using an SOA-fiber ring laser and an arrayed waveguide grating demodulator

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

In this letter, a fiber Bragg grating (FBG) dynamic strain sensing system using a semiconductor optical amplifier (SOA)-fiber ring laser (FRL) and an arrayed waveguide grating (AWG) demodulator is proposed. Due to the characteristics of SOA, it can act as the gain medium as well as light source. The AWG module is used as the wavelength demodulator. It is shown that SOA-based FRL sensors can accurately respond to 1.5 µε dynamic strain signal with high frequency up to 120 kHz and almost no distortion in the waveforms. Experimental results show that the system can be used for acoustic testing, such as underwater ultrasonic detection and external impact monitoring. In addition, the simultaneous dual-channel demodulated system is investigated in detail to verify the multiplexing. This dynamic strain sensing system can be widely utilized in structural health monitoring because of its high stability, low cost and good multiplexability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG C, YAO J. Ultrafast and ultrahigh-resolution interrogation of a fiber Bragg grating sensor based on interferometric temporal spectroscopy[J]. Lightwave technology, 2011, 29(19): 2927–2933.

    Article  ADS  Google Scholar 

  2. JULIO P R, JOSE G S, DRAGOS P, et al. Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs[J]. Sensors, 2016, 16(12): 2007.

    Article  Google Scholar 

  3. LEE H D, KIM G H, EOM T J, et al. Linearized wavelength interrogation system of fiber Bragg grating strain sensor based on wavelength-swept active mode locking fiber laser[J]. Lightwave technology, 2015, 33(12): 2617–2622.

    Article  ADS  Google Scholar 

  4. FOMITCHOV P A, PAVEL. Response of a fiber Bragg grating ultrasonic sensor[J]. Optical engineering, 2003, 42(4): 956–963.

    Article  ADS  Google Scholar 

  5. JIANG X H, TAO C Y, XIAO J J, et al. Fiber-ring laser strain sensing system with two-wave mixing interferometric demodulation[J]. Acta optica sinica, 2021, 41(13): 1306021. (in Chinese)

    Article  Google Scholar 

  6. WEI H M, KRISHNASWAMY S. Comparative assessment of erbium fiber ring lasers and reflective SOA linear lasers for fiber Bragg grating dynamic strain sensing[J]. Applied optics, 2017, 56(13): 3867–3874.

    Article  ADS  Google Scholar 

  7. QIAO Y, ZHOU Y, KRISHNASWAMY S. Adaptive demodulation of dynamic signals from fiber Bragg gratings using two-wave mixing technology[J]. Applied optics, 2006, 45(21): 5132–5142.

    Article  ADS  Google Scholar 

  8. INAMOTO K, TANAKA S, YOKOSUKA H, et al. SOA-based multi-wavelength fiber laser for FBG vibration sensor array[C]//Optical Fiber Sensors 2006, October 23–27, 2006, Cancun, Mexico. Washington, DC: OSA, 2006: 83.

    Google Scholar 

  9. LIU T, HU L L, HAN M. Multiplexed fiber-ring laser sensors for ultrasonic detection[J]. Optics express, 2013, 21(25): 30474–30480.

    Article  ADS  Google Scholar 

  10. MAOL M, TAOC Y, ZHANG J, et al. Multiplexed dynamic strain sensing system based on a fiber ring laser using a non-tunable fiber Fabry-Perot filter[J]. Applied optics, 2020, 59(8): 2375–2379.

    Article  ADS  Google Scholar 

  11. ZHENG Y, DUAN J A. Transmission characteristics of planar optical waveguide devices on coupling interface[J]. Optik, 2013, 124(21): 5274–5279.

    Article  ADS  Google Scholar 

  12. ZHENG Y, DUAN J A. Alignment algorithms for planar optical waveguides[J]. Optical engineering, 2012, 51(10): 2002–2009.

    Article  Google Scholar 

  13. WANG W, TAO C Y, WANG H, et al. Sagnac fiber interferometer with the population grating for fiber Bragg grating dynamic strain sensing[J]. Optoelectronics letters, 2021, 17(12): 723–728.

    Article  ADS  Google Scholar 

  14. TAKAHASHI H, SUZUKI S, KATO K, et al. Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution[J]. Electronics letters, 1990, 26(2): 87–88.

    Article  ADS  Google Scholar 

  15. ZHENG Y, LI J P, GAO P P, et al. Packaging experiments of arrayed waveguide grating[J]. Optik, 2018, 168: 179–183.

    Article  ADS  Google Scholar 

  16. JOHN R N, READ I, MACPHERSON W N. Design considerations for a fibre Bragg grating interrogation system utilizing an arrayed waveguide grating for dynamic strain measurement[J]. Measurement science & technology, 2013, 24(7): 075203.

    Article  ADS  Google Scholar 

  17. YEH C H, CHI S. Fiber-fault monitoring technique for passive optical networks based on fiber Bragg gratings and semiconductor optical amplifier[J]. Optics communications, 2006, 257(2): 306–310.

    Article  ADS  Google Scholar 

  18. KIM S, KWON J, KIM S, et al. Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier[J]. IEEE photonics technology letters, 2001, 13(4): 350–351.

    Article  ADS  MathSciNet  Google Scholar 

  19. ZHANG J, TAO C Y, XIAO J J, et al. Dynamic strain sensing system using a SOA based fiber ring laser with fiber Bragg gratings and an AWG demodulator[C]//Health Monitoring of Structural and Biological Systems XV, March 22–27, 2021, Online Only, California, United States. Bellingham: SPIE, 2021.

    Google Scholar 

  20. CHEN R, TAO C Y, JIANG X H, et al. Detection of dynamic signals from multiplexed SOA-based fiber-ring laser sensors[J]. Applied optics, 2018, 57(35): 10159–10163.

    Article  ADS  Google Scholar 

  21. AHMAD H, OOI H C, SULAIMAN A H, et al. SOA based fiber ring laser with fiber Bragg grating[J]. Microwave and optical technology letters, 2008, 50(12): 3101–3103.

    Article  Google Scholar 

  22. DUTTA N K, WANG Q. Semiconductor optical amplifiers[J]. Encyclopedia of modern optics, 2013, 18(24): 308–316.

    Google Scholar 

  23. SU H, HUANG X G. A novel fiber Bragg grating interrogating sensor system based on AWG demultiplexing[J]. Optics communications, 2007, 275(1): 196–200.

    Article  ADS  Google Scholar 

  24. TRESSLER J F, ALKOY S, NEWNHAM R E. Piezoelectric sensors and sensor materials[J]. Journal of electroceramics, 1998, 2(4): 257–272.

    Article  Google Scholar 

  25. HU N, FUKUNAGA H, MATSUMOTO S, et al. An efficient approach for identifying impact force using embedded piezoelectric sensors[J]. International journal of impact engineering, 2007, 34(7): 1258–1271.

    Article  Google Scholar 

  26. KIRIKERA G R, BALOGUN O, KRISHNASWAMY S. Adaptive fiber Bragg grating sensor network for structural health monitoring: applications to impact monitoring[J]. Structural health monitoring, 2010, 9(1): 5–16.

    Article  Google Scholar 

  27. PUSTAKHOD D, KLEIJN E, WILLIAMS K, et al. High-resolution AWG-based fiber Bragg grating Interrogator[J]. IEEE photonics technology letters, 2016, 28(20): 2203–2206.

    Article  ADS  Google Scholar 

  28. LI H Q, GAO W T, LI E, et al. Investigation of ultra small 1×N AWG for SOI-based AWG demodulation integration microsystem[J]. IEEE photonics journal, 2015, 7(6): 1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanyi Tao.

Additional information

This work has been supported by the National Natural Science Foundation of China (No.51874064), and the Project of Graduate Innovation in Chongqing University of Technology (No.gzlcx20223295).

Statements and Declarations

The authors declare that there are no conflicts of interest related to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Tao, C., Gao, X. et al. Detection of dynamic strain using an SOA-fiber ring laser and an arrayed waveguide grating demodulator. Optoelectron. Lett. 18, 331–337 (2022). https://doi.org/10.1007/s11801-022-1163-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-022-1163-1

Document code

Navigation