Skip to main content
Log in

Enhancing stimulated Brillouin scattering in the waveguide grating

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

We obtain the enhanced stimulated Brillouin scattering (SBS) by adding the optimized Bragg grating to an As2S3 chalcogenide half suspended-core rectangle waveguide. The half suspended-core waveguide grating is characterized by the period of 344.67 nm and the refractive index modulation depth of 0.000 1. Through simulation experiments, the obtained Brillouin gain is 58.5 dB and the 3 dB bandwidth can reduce to 7.8 MHz. The half suspended-core waveguide structure can decrease the size of the chip while the periodic structure can enhance the slow light effect, so we have improved the integration of the waveguide and enhanced SBS by combining these two advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KURODA K, SAWADA T, KURODA T, et al. Enhanced spontaneous emission observed at one-dimensional photonic band edges[J]. Journal of the optical society of America B, 2009, 27(1): 45–50.

    Article  ADS  Google Scholar 

  2. WEN H, TERREL M, FAN S H, et al. Sensing with slow light in fiber Bragg gratings[J]. Sensors journal, IEEE, 2012, 12(1): 156–163.

    Article  ADS  Google Scholar 

  3. KRAUSS T F. Why do we need slow light?[J]. Nature photonics, 2008, 2: 448–450.

    Article  ADS  Google Scholar 

  4. FIGOTIN A, VITEBSKIY I. Slow light in photonic crystals[J]. Waves in random and complex media, 2006, 16(3): 293–382.

    Article  ADS  MathSciNet  Google Scholar 

  5. THÉVENAZ L. Slow and fast light in optical fibres[J]. Nature photonics, 2008, 2: 474–481.

    Article  ADS  Google Scholar 

  6. VLASOV Y A, O’BOYLE M, HAMANN H F, et al. Active control of slow light on a chip with photonic crystal waveguides[J]. Nature, 2005, 438(7064): 65–69.

    Article  ADS  Google Scholar 

  7. SOLJAČIĆ M, JOANNOPOULOS J D. Enhancement of nonlinear effects using photonic crystals[J]. Nature materials, 2004, 3(4): 211–219.

    Article  ADS  Google Scholar 

  8. CORCORAN B, MONAT C, GRILLET C, et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides[J]. Nature photonics, 2009, 3: 206–210.

    Article  ADS  Google Scholar 

  9. MONAT C, EBNALI-HEIDARI M, GRILLET C, et al. Four-wave mixing in slow light engineered silicon photonic crystal waveguides[J]. Optics express, 2010, 18(22): 22915–22927.

    Article  ADS  Google Scholar 

  10. MOK J T, STERKE C D, LITTLER I, et al. Dispersionless slow light using gap solitons[J]. Nature physics, 2006, 2(11): 775–780.

    Article  ADS  Google Scholar 

  11. DOWLING J P, SCALORA M, BLOEMER M J, et al. The photonic band edge laser: a new approach to gain enhancement[J]. Journal of applied physics, 1994, 75(4): 1896–1899.

    Article  ADS  Google Scholar 

  12. QIU W, RAKICH P T, SOLJACIC M, et al. Stimulated Brillouin scattering in slow light waveguides[EB/OL]. (2012-10-02)[2021-12-08]. http://export.arxiv.org/abs/1210.0738.

  13. MERKLEIN M, KABAKOVA I V, BÜTTNER T F S, et al. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits[J]. Nature communications, 2015, 6: 6396.

    Article  ADS  Google Scholar 

  14. ZARIFI A, STILLER B, MERKLEIN M, et al. On-chip correlation-based Brillouin sensing: design, experiment, and simulation[J]. Journal of the optical society of America B, 2019, 36(1): 146.

    Article  ADS  Google Scholar 

  15. SHEN W, ZENG P, YANG Z, et al. Chalcogenide glass photonic integration for improved 2µm optical interconnection[J]. Photonics research, 2020, 8(9): 7.

    Article  Google Scholar 

  16. WANG K, CHENG M, SHI H, et al. Demonstration of stimulated Brillouin scattering in a silicon suspended microring with photonic-phononic waveguide[J]. Journal of lightwave technology, 2022, 40(1): 121–127.

    Article  ADS  Google Scholar 

  17. CHOUDHARY A, MORRISON B, ARYANFAR I, et al. Advanced integrated microwave signal processing with giant on-chip Brillouin gain[J]. Journal of lightwave technology, 2017, 35(4): 846–854.

    Article  ADS  Google Scholar 

  18. MIRNAZIRY S R, WOLFF C, STEEL M J, et al. Stimulated Brillouin scattering in silicon/chalcogenide slot waveguides[J]. Optics express, 2016, 24(5): 4786–4800.

    Article  ADS  Google Scholar 

  19. BOYD R W. Nonlinear optics[M]. 3rd ed. Salt Lake City: Academic Press, 2020.

    Google Scholar 

  20. JACOB B K. Slow light in various media: a tutorial[J]. Advances in optics and photonics, 2010, 2(3): 287–318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Dong.

Additional information

This work has been supported by the National Natural Science Foundation of China (No.61875070), the Science and Technology Development Plan of Jilin Province (No.20180201032GX), and the Science and Technology Project of Education Department of Jilin Province (No.JJKH20190110KJ).

Statements and Declarations

The authors declare that there are no conflicts of interest related to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Cui, F., Yang, Y. et al. Enhancing stimulated Brillouin scattering in the waveguide grating. Optoelectron. Lett. 18, 143–147 (2022). https://doi.org/10.1007/s11801-022-1154-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-022-1154-2

Document code

Navigation