Skip to main content
Log in

Phase-sensitive manipulation of squeezed state by a degenerate optical parametric amplifier inside coupled optical resonators

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

In this paper, we investigate the quantum fluctuations of subharmonic reflected field from a triple-resonant degenerate optical parametric amplifier (OPA) inside coupled optical resonators, which is driven by the squeezed beam at signal frequency. By controlling the relative phase between the pump beam and the injected signal beam, we can see the quantum fluctuation in the phase direction and amplitude direction due to the parametric down-conversion process in the cavity. Thus, the phase sensitive operation of the compression field is realized due to the quantum interference between the harmonic field of the down converter of OPA and the inner field of the coupled optical resonator. We verified the quantum coherent phenomena of OPA in coupled optical resonators and phase-sensitive manipulations of quantum entanglement for quantum information processing. We realized the electromagnetically induced transparency-like (EIT-like) effect and the optical parameter conversion process at the same time in one optical device. These properties can favor higher manipulation precision and control efficiency, which is more suitable for the integration of quantum-on-chip systems, laying a foundation for the practical application of quantum information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WILK T, GAËTAN A, EVELLIN C, et al. Entanglement of two individual neutral atoms using Rydberg blockade[J]. Physical review letters, 2010, 104(1): 010502.

    Article  ADS  Google Scholar 

  2. BROWAEYS A, BARREDO D, LAHAYE T. Experimental investigations of dipole-dipole interactions between a few Rydberg atoms[J]. Journal of physics B atomic molecular physics, 2016, 49(15): 152001.

    Article  ADS  Google Scholar 

  3. LIN Y C, NABEKAWA Y, MIDORIKAWA K. Optical parametric amplification of sub-cycle shortwave infrared pulses[J]. Nature communications, 2020, 11(1): 3413.

    Article  ADS  Google Scholar 

  4. TAYEBEH N, ZEYNAB M, MASOUMEH H M. White light cavity via electromagnetically induced transparency based four-wave mixing in four-level Rb atoms[J]. Applied physics A, 2020, 126(9): 674.

    Article  Google Scholar 

  5. KUMAR S C, WEI J, DEBRAY J, et al. High-power, widely tunable, room-temperature picosecond optical parametric oscillator based on cylindrical 5% MgO: PPLN[J]. Optics letters, 2015, 40(16): 3897–3900.

    Article  ADS  Google Scholar 

  6. WAGNER F, JOAO C P, FILS J, et al. Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification[J]. Applied physics B, 2014, 116(2): 429–435.

    Article  Google Scholar 

  7. ZHANG C, CHENG S, LI L, et al. Experimental validation of quantum steering ellipsoids and tests of volume monogamy relations[J]. Physical review letters, 2019, 122(7): 070402.1–070402.6.

    ADS  Google Scholar 

  8. HU J Y, HE J Y, LIU Y G, et al. Nonlinear propagation of pulses in multimode fiber with strong linear coupling[J]. Optoelectronics letters, 2020, 16(5): 379–383.

    Article  ADS  Google Scholar 

  9. AOKI T, TAKAHASHI G, FURUSAWA A. Squeezing at 946nm with periodically poled KTiOPO4[J]. Optics express, 2006, 14(15): 6930.

    Article  ADS  Google Scholar 

  10. YU L, FAN J, ZHU S, et al. Creating a tunable spin squeezing via a time-dependent collective atom-photon coupling[J]. Physical review A, 2013, 89(2): 530–541.

    Google Scholar 

  11. YANG W, JIN X, YU X, et al. Dependence of measured audio-band squeezing level on local oscillator intensity noise[J]. Optics express, 2017, 25(20): 24262.

    Article  ADS  Google Scholar 

  12. FULVIO F, FLAMINI F, WALSCHAERS M, et al. Validating multi-photon quantum interference with finite data[J]. Quantum science and technology, 2020, 5(4): 045005.

    Article  ADS  Google Scholar 

  13. VAHLBRUCH H, MEHMET M, DANZMANN K, et al. Detection of 15dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical review letters, 2016, 117(11): 110801.

    Article  ADS  Google Scholar 

  14. ROMAN S. Squeezed states of light and their applications in laser interferometers[EB/OL]. (2017-12-17) [2021-09-01]. https://arxiv.org/pdf/1611.03986.pdf.

  15. WAN Z, FENG J, LI Y, et al. Comparison of phase quadrature squeezed states generated from degenerate optical parametric amplifiers using PPKTP and PPLN[J]. Optics express, 2018, 26(5): 5531.

    Article  ADS  Google Scholar 

  16. RAUSSENDORF R, BRIEGEL H J. A one-way quantum computer[J]. Physical review letters, 2001, 86(22): 5188–5191.

    Article  ADS  Google Scholar 

  17. TAKAHIRO S, JUN-ICHI Y, KENZO M, et al. Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator[J]. Optics express, 2016, 24(25): 28383–28391.

    Article  Google Scholar 

  18. LI Z, SUN X, WANG Y, et al. Investigation of residual amplitude modulation in squeezed state generation system[J]. Optics express, 2018, 26(15): 18957–18968.

    Article  ADS  Google Scholar 

  19. YANG W, SHI S, WANG Y, et al. Detection of stably bright squeezed light with the quantum noise reduction of 126 dB by mutually compensating the phase fluctuations[J]. Optics letters, 2017, 42(21): 4553.

    Article  ADS  Google Scholar 

  20. WEI C H, ZUO C L, LIANG L, et al. Compact external cavity diode laser for quantum experiments[J]. Optoelectronics letters, 2020, 16(6): 433–436.

    Article  ADS  Google Scholar 

  21. BRAVERMAN B, KAWASAKI A, VULETIĆ V. Impact of non-unitary spin squeezing on atomic clock performance[J]. New journal of physics, 2018, 20(10): 103019.

    Article  ADS  Google Scholar 

  22. WANG L, TAN Z, ZHU Y, et al. Control of optical bistability in the nonlinear regime of two-sided cavity quantum electrodynamics[J]. Journal of the optical society of America B optical physics, 2017, 34(9): 1780.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajia Du.

Additional information

This work has been supported by the National Natural Science Foundation of China (Nos.11704053, 61705027 and 62005033), the National Key R&D Program of China (Nos.2018YFF01010202 and 2018YFF01010201), the Science and Technology Research Program of Chongqing Municipal Education Commission (Nos.KJQN201800629 and KJQN201800621), the Innovation Leader Talent Project of Chongqing Science and Technology (No.CSTC-CXLJRC201711), the Postdoctoral Applied Research Program of Qingdao (No.62350079311135), and the Postdoctoral Applied Innovation Program of Shandong (No.62350070311227).

Statements and Declarations

The authors declare that there are no conflicts of interest related to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, K., Wang, W., Cui, W. et al. Phase-sensitive manipulation of squeezed state by a degenerate optical parametric amplifier inside coupled optical resonators. Optoelectron. Lett. 18, 135–142 (2022). https://doi.org/10.1007/s11801-022-1149-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-022-1149-z

Document code

Navigation