Skip to main content
Log in

Dynamical control of directional nonlinear scattering from metallic nanoantennas by three-dimensional focal polarization orientation

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

We demonstrate that the directionality of far-field second harmonic (SH) emission generated from individual gold nanosphere can be flexibly engineered by manipulating three-dimensional (3D) focal polarization orientation of the excitation field, which is explained by the coherent interference between SH dipolar and quadrupolar emission modes. The SH dipolar emission mode is independent of the polarization direction of the fundamental field whereas the evolution of the focal polarization orientation can dramatically modify the quadrupolar emission pattern. Therefore, the resultant SH emission pattern has a polarization-dependent behavior and side scattering almost perpendicular to the propagation direction of the incident light can be observed under a specific condition. Our findings provide a novel degree of freedom for all-optical control of directional nonlinear scattering from single nanoantenna, thereby opening new possibilities for future potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Novotny and N. van Hulst, Nature Photonics 5, 83 (2011).

    Article  ADS  Google Scholar 

  2. M. W. Knight, H. Sobhani, P. Nordlander and N. J. Halas, Science 332, 702 (2011).

    Article  ADS  Google Scholar 

  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. Van Duyne, Nature Materials 7, 442 (2008).

    Article  ADS  Google Scholar 

  4. M. Elsaid, K. R. Mahmoud, M. F. O. Hameed, S. S. A. Obayya and M. Hussein, Journal of the Optical Society of America B 37, 1183 (2020).

    Article  ADS  Google Scholar 

  5. M. Neugebauer, T. Bauer, P. Banzer and G. Leuchs, Nano Letters 14, 2546 (2014).

    Article  ADS  Google Scholar 

  6. J. Li, N. Verellen, D. Vercruysse, T. Bearda, L. Lagae and P. Van Dorpe, Nano Letters 16, 4396 (2016).

    Article  ADS  Google Scholar 

  7. P. R. Wiecha, C. Majorel, C. Girrard, A. Cuche, V. Paillard, O. L. Muskens and A. Arbouet, Optics Express 27, 29069 (2019).

    Article  ADS  Google Scholar 

  8. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu and B. Luk’yanchuk, Nature Communications 4, 1527 (2013).

    Article  ADS  Google Scholar 

  9. A. Devilez, B. Stout and N. Bonod, ACS Nano 4, 3390 (2010).

    Article  Google Scholar 

  10. E. Rusak, I. Staude, M. Decker, J. Sautter, A. E. Miroshnichenko, D. A. Powell, D. N. Neshev and Y. S. Kivshar, Applied Physics Letters 105, 221109 (2014).

    Article  ADS  Google Scholar 

  11. X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo and W. C. Chew, Scientific Reports 6, 18872 (2016).

    Article  ADS  Google Scholar 

  12. L. Carletti, A. Locatelli, D. Neshev and C. D. Angelis, ACS Photonics 3, 1500 (2016).

    Article  Google Scholar 

  13. X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, M. Fang, W. C. Chew and W. C. H. Choy, Physical Review A 94, 053825 (2016).

    Article  ADS  Google Scholar 

  14. L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Z. Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev and M. Rahmani, ACS Nano 14, 1379 (2020).

    Article  Google Scholar 

  15. K. Yoo, S. F. Becker, M. Silies, S. Yu, C. Lienau and N. Park, Optics Express 27, 18246 (2019).

    Article  ADS  Google Scholar 

  16. D. K. Sharma, S. K. Chaubey, A. B. Vasista, J. J. Karumancheril, R. P. N. Tripathi, A. Bouhelier and G. V. P. Kumar, Applied Optics 57, 5914 (2018).

    Article  ADS  Google Scholar 

  17. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan and F. Capasso, Science 340, 331 (2013).

    Article  ADS  Google Scholar 

  18. M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs and P. Banzer, Nature Communications 7, 11286 (2016).

    Article  ADS  Google Scholar 

  19. K. S. Youngworth and T. G. Brown, Optics Express 7, 77 (2000).

    Article  ADS  Google Scholar 

  20. A. F. Abouraddy and K. C. Toussaint Jr., Physical Review Letters 96, 153901 (2006).

    Article  ADS  Google Scholar 

  21. P. Olk, T. Härtling, R. Kullock and L. M. Eng, Applied Optics 49, 4479 (2010).

    Article  ADS  Google Scholar 

  22. X. Li, T.-H. Lan, C.-H. Tien and M. Gu, Nature Communications 3, 998 (2012).

    Article  ADS  Google Scholar 

  23. B. Richards and E. Wolf, Proceedings of the Royal Society of London. Series A. Sciences 253, 358 (1959).

    ADS  Google Scholar 

  24. J. Sun, X. Wang, S. Chang, M. Zeng, S. Shen and N. Zhang, Optics Express 24, 7477 (2016).

    Article  ADS  Google Scholar 

  25. W. A. Challener, I. K. Sendur and C. Peng, Optics Express 11, 3160 (2003).

    Article  ADS  Google Scholar 

  26. G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou and P.-F. Brevet, Physical Review B 82, 235403 (2010).

    Article  ADS  Google Scholar 

  27. J. Butet, K. Thyagarajan and O. J. F Martin, Nano Letters 13, 1787 (2013).

    Article  ADS  Google Scholar 

  28. M. Finazzi, P. Biagioni, M. Celebrano and L. Duo, Physical Review B 76, 125414 (2007).

    Article  ADS  Google Scholar 

  29. J. I. Dadap, J. Shan and T. F. Heinz, Journal of the Optical Society of America B 21, 1328 (2004).

    Article  ADS  Google Scholar 

  30. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin and P. F. Brevet, Physical Review B 71, 165407 (2005).

    Article  ADS  Google Scholar 

  31. J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou and P.-F. Brevet, Physical Review Letters 105, 077401 (2010).

    Article  ADS  Google Scholar 

  32. J. Butet, T. V. Raziman, K.-Y. Yang, G. D. Bernasconi and O. J. F. Martin, Optics Express 24, 17138 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-hui Wang  (王湘晖).

Additional information

This work has been supported by the Key Program of the Natural Science Foundation of Tianjin (No.19JCZDJC32700), and the Science and Technology Support Program of Tianjin (No.17YFZCSY00740).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xh., Wang, Jx. & Zeng, M. Dynamical control of directional nonlinear scattering from metallic nanoantennas by three-dimensional focal polarization orientation. Optoelectron. Lett. 17, 65–69 (2021). https://doi.org/10.1007/s11801-021-0001-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-021-0001-1

Document code

Navigation