Skip to main content
Log in

Broadband second-harmonic generation in a tapered PPLN waveguide

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

We demonstrate a period poled tapered lithium niobate waveguide and study second harmonic generation (SHG) in this device for the purpose of broadening the quasi-phase matching (QPM) acceptance bandwidth. The finite-difference beam-propagation method is used to simulate the guided modes and calculate the effective indices. The simulation results show that by tapering the width of the cross section linearly, the phase mismatch between a specific input wavelength and its SHG signal can be varied along the propagation length. Ideal SHG phase-matching conditions for a wide range of input wavelengths in communication band from 1 542.5 nm to 1 553.5 nm can be satisfied in different positions of the waveguide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga and H. Suzuki, IEEE Photonics Technology Letters 17, 1049 (2005).

    Article  ADS  Google Scholar 

  2. C. Langrock, E. Diamanti, R V. Roussev, Y. Yamamoto and M. M. Fejer, Optics Letters 30, 1725 (2005).

    Article  ADS  Google Scholar 

  3. G. Imeshev, M. A. Arbore, S. Kasriel and M. M. Fejer, Journal of the Optical Society of America B 17, 1420 (2000).

    Article  ADS  Google Scholar 

  4. S. Tanzilli W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky and N. Gisin, The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 18, 155 (2002).

    ADS  Google Scholar 

  5. M. Bock, A. Lenhard, C. Chunnilall and C. Becher, Optics Express 24, 23992 (2016).

    Article  ADS  Google Scholar 

  6. T. Umeki, O. Tadanaga, M. Asobe, Y. Miyamoto and H. Takenouchi, Optics Express 22, 2473 (2014).

    Article  ADS  Google Scholar 

  7. S. G. Sabouri and A. Khorsandi, Journal of the Optical Society of America B 33, 2493 (2016).

    Article  Google Scholar 

  8. S. D. Yang, A. M Weiner, K. R. Parameswaran and M. M. Fejer, Optics Letters 29, 2070 (2004).

    Article  ADS  Google Scholar 

  9. A. Tehranchi and R. Kashyap, Journal of Lightwave Technology 26, 343 (2008).

    Article  ADS  Google Scholar 

  10. T. Liu, I. B. Djordjevic, Z. Song, Y. Chen, R. Zhang, K. Zhang, W. Zhao and B. Li, Optics Express 24, 10946 (2016).

    Article  ADS  Google Scholar 

  11. X. Zeng, S. Ashihara, Z. Wang, T. Wang, Y. Chen and M. Cha, Optics Express 17, 16877 (2009).

    Article  ADS  Google Scholar 

  12. D. K. Choge, H. X. Chen, Y. B. Xu, L. Guo, G. W. Li and W. G. Liang, Applied Optics 57, 5459 (2018).

    Article  ADS  Google Scholar 

  13. J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman and R. M. Osgood, Optics Express 20, 9227 (2012).

    Article  ADS  Google Scholar 

  14. X. Xiong, C.L. Zou, X. Guo, H. X. Tang, X. F. Ren and G. C. Guo, OSA Continuum 1, 1349 (2018).

    Article  Google Scholar 

  15. B. M. Kim, H. W. Song, Y. K. Cho and J. P. Hong, Journal of the Korean Physical Society 65, 625 (2014).

    Article  ADS  Google Scholar 

  16. S. Dwari, A. Chakraborty and S. Sanyal, Progress in Electromagnetics Research 64, 219 (2006).

    Article  Google Scholar 

  17. J. Mu and W. P. Huang, Optics Letters 36, 1026 (2011).

    Article  ADS  Google Scholar 

  18. O. Gayer, Z. Sacks, E. Galun and A. Arie, Applied Physics B 91, 343 (2008).

    Article  Google Scholar 

  19. J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka and H. Yamashita, Journal of Non-Crystalline Solids 135, 86 (1991).

    Article  ADS  Google Scholar 

  20. I. Chung and N. Dagli, IEEE Journal of Quantum Electronics 26, 1335 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-guo Liang  (梁万国).

Additional information

This work has been supported by the National Nature Science Foundation of China (No.51890862).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Chen, Hx., Zhang, Xb. et al. Broadband second-harmonic generation in a tapered PPLN waveguide. Optoelectron. Lett. 16, 252–255 (2020). https://doi.org/10.1007/s11801-020-9156-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-020-9156-4

Document code

Navigation