Skip to main content
Log in

On the Similarity of Boundary Triples of Symmetric Operators in Krein Spaces

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

It is a classical result that the Weyl function of a simple symmetric operator in a Hilbert space determines a boundary triple uniquely up to unitary equivalence. We generalize this result to a simple symmetric operator in a Pontryagin space, where unitary equivalence is replaced by the similarity realized via a standard unitary operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Günther, U., Kuzhel, S.: J-self-adjoint operators with C-symmetries: an extension theory approach, J. Phys. A: Math. Theor. 42 (2009), no. 10, 105205

  2. Azizov, T., Ćurgus, B., Dijksma, A.: Standard symmetric operators in Pontryagin spaces: a generalized von Neumann formula and minimality of boundary coefficients. J. Func. Anal. 198(2), 361–412 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Azizov, T., Iokhvidov, I.: Linear operators in spaces with an indefinite metric and their applications. Itogi nauki i mech. Ser. Mat. 17, 113–205 (1979)

    MathSciNet  MATH  Google Scholar 

  4. Azizov, T., Iokhvidov, I.: Linear operators in spaces with an indefinite metric, Wiley (1989)

  5. Behrndt, J.: Realization of nonstrict matrix Nevanlinna functions as Weyl functions of symmetric operators in Pontryagin spaces. Proc. Amer. Math. Soc. 137(8), 2685–2696 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Behrndt, J., Derkach, V.A., Hassi, S., de Snoo, H.: A realization theorem for generalized Nevanlinna families. Oper. Matrices 5(4), 679–706 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Behrndt, J., Hassi, S., de Snoo, H.: Boundary Value Problems, Weyl Functions, and Differential Operators., Birkhauser, (2020)

  8. Bognár, J.: Indefinite inner product spaces. Springer-Verlag, Berlin Heidelberg New York (1974)

    Book  MATH  Google Scholar 

  9. Calkin, J.: Abstract symmetric boundary conditions. Trans. Amer. Math. Soc. 45(3), 369–442 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coddington, E.A.: Extension theory of formally normal and symmetric subspaces. Mem. Amer. Math. Soc. 134, 1–80 (1973)

    MathSciNet  MATH  Google Scholar 

  11. Coddington, E.A.: Self-adjoint subspace extensions of nondensely defined symmetric operators. Bullet. Amer. Mac. Soc. 79(4), 712–715 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coddington, E.A.: Self-adjoint subspace extensions of nondensely defined symmetric operators. Adv. Math. 14(3), 309–332 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Derkach, V.: On generalized resolvents of Hermitian relations in Krein spaces. J. Math. Sci. 97(5), 4420–4460 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Derkach, V.: Boundary Triplets, Weyl Functions, and the Kreĭn Formula, Operator Theory (2015), 183–218

  15. Derkach, V., Hassi, S., Malamud, M.: Generalized boundary triples, II. Some applications of generalized boundary triples and form domain invariant Nevanlinna functions, Math. Nachr. 295 (2022), no. 6, 1113–1162

  16. Derkach, V., Hassi, S., Malamud, M., de Snoo, H.: Boundary relations and their Weyl families. Trans. Amer. Math. Soc. 358(12), 5351–5400 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Derkach, V., Hassi, S., Malamud, M., de Snoo, H.: Boundary relations and generalized resolvents of symmetric operators. Russ. J. Math. Phys. 16(1), 17–60 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Derkach, V., Malamud, M.: Generalized resolvents and the boundary value problems for hermitian operators with gaps. J. Func. Anal. 95(1), 1–95 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Derkach, V., Malamud, M.: Weyl function of a Hermitian operator and its connection with characteristic function, arXiv:1503.08956 (2015)

  20. Derkach, V.A., Malamud, M.M.: Extension theory of symmetric operators and boundary value problems, vol. 104. Institute of Mathematics of NAS of Ukraine, Kiev (2017). (in Russian)

    Google Scholar 

  21. Derkach, V., Hassi, S., Malamud, M.M.: Generalized boundary triples, I. Some classes of isometric and unitary boundary pairs and realization problems for subclasses of Nevanlinna functions. Math. Nachr. 293(7), 1278–1327 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dijksma, A., Langer, H., de Snoo, H.: Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions. Math. Nachr. 161, 107–154 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dijksma, A., Langer, H., Luger, A., Shondin, Yu.: Minimal realizations of scalar generalized Nevanlinna functions related to their basic factorization, spectral methods for operators of mathematical physics. Operator Theory: Advances and Applications (2004)

  24. Gokhberg, I., Krein, M.: Fundamental aspects of defect numbers, root numbers and indexes of linear operators. Uspekhi Mat. Nauk 12(2), 43–118 (1957)

    MathSciNet  MATH  Google Scholar 

  25. Gorbachuk, V., Gorbachuk, M.: Boundary Value Problems for Operator Differential Equations, vol. 48. Kluwer Academic Publishers, Dordrecht (1991)

    Book  MATH  Google Scholar 

  26. Hassi, S., de Snoo, H., Woracek, H.: Some interpolation problems of Nevanlinna-Pick type. The Krein-Langer method, Operator Theory: Advances and Applications 106, 201–216 (1998)

    MATH  Google Scholar 

  27. Hassi, S., de Snoo, H.S.V., Szafraniec, F.H.: Componentwise and Cartesian decompositions of linear relations. Dissert. Math. 465, 1–59 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hassi, S., de Snoo, H.S.V., Szafraniec, F.H.: Infinite-dimensional perturbations, maximally nondensely defined symmetric operators, and some matrix representations. Indag. Math. 23(4), 1087–1117 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hassi, S., Kuzhel, S.: On J-self-adjoint operators with stable C-symmetries. Proc. Edinburgh Math. Soc. 143(1), 141–167 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hassi, S., Malamud, M., Mogilevskii, V.: Unitary equivalence of proper extensions of a symmetric operator and the Weyl function. Integr. Equ. Oper. Theory 77(4), 449–487 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hassi, S., Sebestyén, Z., de Snoo, H.S.V., Szafraniec, F.H.: A canonical decomposition for linear operators and linear relations. Acta Math. Hungar. 115(4), 281–307 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hassi, S., Wietsma, H.: Minimal realizations of generalized Nevanlinna functions. Opuscula Math. 36(6), 749–768 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Iokhvidov, I., Krein, M.: Spectral theory of operators in space with indefinite metric. I, Tr. Mosk. Mat. Obs. 5 (1956), 367–432

  34. Jonas, P., Langer, H.: Self-adjoint extensions of a closed linear relation of defect one in a Krein space, Operator theory and boundary eigenvalue problems, pp. 176–205, (1995)

  35. Juršėnas, R.: Weyl families of transformed boundary pairs, Math. Nachr. (2023)

  36. Kochubei, A.N.: Extensions of symmetric operators and symmetric binary relations. Mat. Zametki 17(1), 41–48 (1975)

    MathSciNet  Google Scholar 

  37. Krein, M., Langer, H.: Defect subspaces and generalized resolvents of an Hermitian operator in the space \(\Pi _k\). Funktsional. Anal. i Prilozhen. 5(2), 59–71 (1971)

    Article  Google Scholar 

  38. Kuzhel, S., Trunk, C.: On a class of J-self-adjoint operators with empty resolvent set. J. Math. Anal. Appl. 379(1), 272–289 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Langer, H., Luger, A.: A class of 2 \(\times \) 2-matrix functions, Glasnik Matematički 35(55), 149–160 (2000)

  40. Langer, H., Textorius, B.: On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space. Pacific. J. Math. 72(1), 135–165 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  41. Malamud, M., Mogilevskii, V.: Krein type formula for canonical resolvents of dual pairs of linear relations. Methods Func. Anal. Topology 8(4), 72–100 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Mogilevskii, V.: Boundary triplets and Krein type resolvent formula for symmetric operators with unequal defect numbers. Methods Func. Anal. Topology 12(3), 258–280 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Mogilevskii, V.: Boundary triplets and Titchmarsh.Weyl functions of differential operators with arbitrary deficiency indices. Methods Func. Anal. Topology 15(3), 280–300 (2009)

  44. Mogilevskii, V.: Description of generalized resolvents and characteristic matrices of differential operators in terms of the boundary parameter. Math. Notes 90(4), 558–583 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Popovici, D., Sebestyén, Z.: Factorizations of linear relations. Adv. Math. 233, 40–55 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sandovici, A., Sebestyén, Z.: On operator factorization of linear relations. Positivity 17(4), 1115–1122 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shmul’yan, Yu.L.: Extension theory for operators and spaces with indefinite metric. Izv. Akad. Nauk. 38(4), 896–908 (1974)

  48. Strauss, V.A., Trunk, C.: Some Sobolev spaces as Pontryagin spaces. Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz. 6, 14–23 (2012)

    MATH  Google Scholar 

  49. Wietsma, H.L.: On unitary relations between Krein spaces. Acta Wasaensia, Vaasan Yliopisto (2012)

    MATH  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank the referee for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rytis Juršėnas.

Additional information

Communicated by Daniel Alpay.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A.

Appendix A.

Lemma A.1

Let \({\mathfrak {H}}=({\mathfrak {H}},[\cdot ,\cdot ])\) be a Krein space with fundamental symmetry J, and consider relations G and H in \({\mathfrak {H}}\) such that \(H\subseteq G^+\cap G^\bot \). Then:

  1. (a)

    If \({{\,\textrm{dom}\,}}G\bot {{\,\textrm{dom}\,}}H\) then

    $$\begin{aligned} \begin{aligned}&{{\,\textrm{ran}\,}}(JH+zI)\subseteq {\mathfrak {N}}_z(JG^+)\\&\text {or equivalently}\\&{{\,\textrm{ran}\,}}(JG+zI)\subseteq {\mathfrak {N}}_z(JH^+) \end{aligned} \end{aligned}$$
    (A.1)

    for all \(z\in {\mathbb {C}}\).

  2. (b)

    If \(G\,\widehat{\oplus }\,H\) is a neutral subset of \({\mathfrak {K}}\) then:

    1. (i)

      The inclusions in (A.1) hold for both \(z=\textrm{i}\) and \(z=-\textrm{i}\).

    2. (ii)

      The inclusions in (A.1) become the equalities for \(z=\textrm{i}\) or \(z=-\textrm{i}\) (resp. for both \(z=\textrm{i}\) and \(z=-\textrm{i}\)) iff \(G\,\widehat{\oplus }\,H\) is maximal (resp. hyper-maximal) neutral.

Remark A.2

In (b), \({{\,\textrm{dom}\,}}G\bot {{\,\textrm{dom}\,}}H\) is not assumed. As in the body of the text, the symbol \(\bot \) indicates the orthogonality with respect to a Hilbert space metric \([\cdot ,J\cdot ]\), while \([\bot ]\) refers to the orthogonality with respect to \([\cdot ,\cdot ]\).

Proof

(a) \({{\,\textrm{dom}\,}}G\bot {{\,\textrm{dom}\,}}H\) implies that

$$ {{\,\textrm{dom}\,}}(JH)={{\,\textrm{dom}\,}}H\subseteq ({{\,\textrm{dom}\,}}G)^\bot = {{\,\textrm{mul}\,}}(JG^+)\,. $$

Since \(G\bot H\), this implies that also

$$ {{\,\textrm{ran}\,}}(JH)\subseteq ({{\,\textrm{ran}\,}}(JG))^\bot =\ker G^+= \ker (JG^+)\,. $$

Consider \((f,f^\prime )\in JH\), so that \(f^\prime +zf\in {{\,\textrm{ran}\,}}(JH+zI)\) for all \(z\in {\mathbb {C}}\). Then

$$\begin{aligned} (f^\prime +zf,z(f^\prime +zf))= z(f,f^\prime )+(f^\prime ,0)+z^2(0,f). \end{aligned}$$

Since \((f,f^\prime )\), \((f^\prime ,0)\), and (0, f) are all the elements from \(JG^+\), \(f^\prime +zf\in {\mathfrak {N}}_z(JG^+)\).

(b)(i) Let \(K\mathrel {\mathop :}=G\,\widehat{\oplus }\,H\) be neutral. Since \(JH=JK\cap (JG)^\bot \), the range \({{\,\textrm{ran}\,}}(JH+zI)\), for all \(z\in {\mathbb {C}}\), consists of those \(k^\prime +zk\) such that \((k,k^\prime )\in JK\) and \((k^\prime ,-k)\in JG^+\). If \(z=\textrm{i}\) then

$$\begin{aligned} (k^\prime +\textrm{i}k,\textrm{i}k^\prime -k)= \textrm{i}(k,k^\prime )+(k^\prime ,-k). \end{aligned}$$

Since \(JK\subseteq JG^+\), this shows \(k^\prime +\textrm{i}k\in {\mathfrak {N}}_\textrm{i}(JG^+)\). The case \(z=-\textrm{i}\) is treated analogously.

(b)(ii) Sufficiency: Let K be either maximal or hyper-maximal neutral; that is, either \(P_+(K)={\mathfrak {K}}\) or \(P_-(K)={\mathfrak {K}}\) if K is maximal and \(P_\pm (K)={\mathfrak {K}}\) if K is hyper-maximal. We consider the case \(P_+(K)={\mathfrak {K}}\), since the case \(P_-(K)={\mathfrak {K}}\) is treated analogously. In view of (b)(i) it suffices to show that \({\mathfrak {N}}_\textrm{i}(JG^+)\subseteq {{\,\textrm{ran}\,}}(JH+\textrm{i}I)\).

If \(P_+(K)={\mathfrak {K}}\) then a maximal symmetric relation JK in a Hilbert space \(({\mathfrak {H}},[\cdot ,J\cdot ])\) satisfies \({{\,\textrm{ran}\,}}(JK+\textrm{i}I)={\mathfrak {H}}\). Thus, if \(g\in {\mathfrak {N}}_\textrm{i}(JG^+)\) then \((\exists (k,k^\prime )\in JK)\) \(g=k^\prime +\textrm{i}k\). Then

$$\begin{aligned} JG^+\ni (g,\textrm{i}g)= (k^\prime +\textrm{i}k,\textrm{i}k^\prime -k)= \textrm{i}(k,k^\prime )+(k^\prime ,-k). \end{aligned}$$

Since \(JK\subseteq JG^+\), this shows \((k^\prime ,-k)\in JG^+\), i.e. \(g\in {{\,\textrm{ran}\,}}(JH+\textrm{i}I)\).

Necessity: Let \(K=G\,\widehat{\oplus }\,H\) be neutral and \({{\,\textrm{ran}\,}}(JH\pm \textrm{i}I)={\mathfrak {N}}_{\pm \textrm{i}}(JG^+)\). Then \({{\,\textrm{ran}\,}}(JK\pm \textrm{i}I)={\mathfrak {H}}\), thus showing \(P_\pm (K)={\mathfrak {K}}\). \(\square \)

Lemma A.3

Let G and H be relations in a Krein space \(({\mathfrak {H}},[\cdot ,\cdot ])\) with fundamental symmetry J.

  1. (a)

    The eigenspace

    $$\begin{aligned} \begin{aligned} {\mathfrak {N}}_z(G\,\widehat{+}\,H)=&{{\,\textrm{ran}\,}}((G-zI)^{-1}(zI-H)+I)\\ =&{{\,\textrm{ran}\,}}((G-zI)^{-1}-(H-zI)^{-1})\\ \supseteq&{\mathfrak {N}}_z(G)+{\mathfrak {N}}_z(H) \end{aligned} \end{aligned}$$
    (A.2)

    for all \(z\in {\mathbb {C}}\).

  2. (b)

    Let \(O=O(G,H)\) be the set of all those \(z\in {\mathbb {C}}\) such that

    $$\begin{aligned} {{\,\textrm{ran}\,}}(G-zI)\cap {{\,\textrm{ran}\,}}(H-zI)=\{0\}. \end{aligned}$$

    (Equivalently, O is the set of all those \(z\in {\mathbb {C}}\) such that \((G-zI)^{-1}(H-zI)\subseteq {\mathfrak {N}}_z(H)\times {\mathfrak {N}}_z(G)\).) Then the inclusion \(\supseteq \) in (A.2) becomes the equality for all \(z\in O\); hence

    $$\begin{aligned} O\cap \sigma _p(G\,\widehat{+}\,H)= O\cap (\sigma _p(G)\cup \sigma _p(H) ). \end{aligned}$$
    (A.3)
  3. (c)

    Suppose \(G\bot H\) as linear subsets of \({\mathfrak {K}}\). Let O be as in (b). Then

    $$\begin{aligned} \sigma _p(G\,\widehat{\oplus }\,H)= ( O\cap (\sigma _p(G)\cup \sigma _p( H) ) )\amalg ({\mathbb {C}}\smallsetminus O). \end{aligned}$$
    (A.4)

    (The symbol \(\amalg \) denotes the union of disjoint sets.) In particular:

    1. (i)

      \(\sigma _p(G\,\widehat{\oplus }\,H)=\emptyset \) (resp. \(\sigma ^0_p(G\,\widehat{\oplus }\,H)=\emptyset \)) iff \(O={\mathbb {C}}\) and \(\sigma _p(G)=\sigma _p(H)=\emptyset \) (resp. \(O\supseteq {\mathbb {C}}_*\) and \(\sigma ^0_p(G)=\sigma ^0_p(H)=\emptyset \)).

    2. (ii)

      \(\sigma _p(G\,\widehat{\oplus }\,H)={\mathbb {C}}\) (resp. \(\sigma ^0_p(G\,\widehat{\oplus }\,H)={\mathbb {C}}_*\)) iff \(O\subseteq \sigma _p(G)\cup \sigma _p(H)\) (resp. \({\mathbb {C}}_*\cap O\subseteq \sigma ^0_p(G)\cup \sigma ^0_p(H)\)).

Proof

(a) Let \(f\in {\mathfrak {N}}_z(G\,\widehat{+}\,H)\), i.e. \((f,zf)\in G\,\widehat{+}\,H\). Then \(f=g+h\) with \((g,g^\prime )\in G\) and \((h,h^\prime )\in H\) such that \(g^\prime +h^\prime =z(g+h)\), i.e. \((\exists u)\) \((g,u)\in G-zI\) and \((h,u)\in zI- H\), i.e. \((h,g)\in (G-zI)^{-1}(zI-H)\). Since the arguments are reversible, this proves (A.2).

(b) First we show that \(z\in O\) iff \(z\in {\mathbb {C}}\) satisfies \((G-zI)^{-1}(H-zI)\subseteq {\mathfrak {N}}_z(H)\times {\mathfrak {N}}_z(G)\). This will follow from a general claim: If X and Y are relations in \({\mathfrak {H}}\) then \({{\,\textrm{ran}\,}}X\cap {{\,\textrm{ran}\,}}Y\) is trivial iff \(X^{-1}Y\subseteq \ker Y\times \ker X\). (Notice that always \(X^{-1}Y\supseteq \ker Y\times \ker X\).) Indeed, \({{\,\textrm{ran}\,}}X\cap {{\,\textrm{ran}\,}}Y\) consists of those u such that \((\exists x)\) \((\exists y)\) \((x,u)\in X\) and \((y,u)\in Y\), while \(X^{-1}Y\) is the set of those (yx) such that \((\exists u)\) \((x,u)\in X\) and \((y,u)\in Y\). Therefore, if \({{\,\textrm{ran}\,}}X\cap {{\,\textrm{ran}\,}}Y\) is trivial then \((y,x)\in X^{-1}Y\) implies \((y,x)\in \ker Y\times \ker X\). And conversely, if \(X^{-1}Y=\ker Y\times \ker X\) then \(u\in {{\,\textrm{ran}\,}}X\cap {{\,\textrm{ran}\,}}Y\) implies \(u=0\).

This shows in particular that the inclusion \(\supseteq \) in (A.2) becomes the equality for all \(z\in O\).

(c) Let

$$\begin{aligned} L_z\mathrel {\mathop :}=(G-zI)^{-1}(zI-H)+I. \end{aligned}$$

By (a), \({\mathfrak {N}}_z(G\,\widehat{\oplus }\,H)\) is trivial iff so is \({{\,\textrm{ran}\,}}L_z\), i.e.iff \(L_z\subseteq {\mathfrak {H}}\times \{0\}\). We show that \(\ker L_z\) is trivial, meaning that the last inclusion is equivalent to \(L_z=\{0\}\), which in turn is equivalent to \((G-zI)^{-1}(zI-H)=\{0\}\).

The relation \(L_z\) consists of the pairs \((h,g+h)\) such that \((\exists u)\) \((g,zg+u)\in G\) and \((h,zh-u)\in H\). Since \(G\bot H\)

$$\begin{aligned} \Vert u\Vert ^2-(1+|z|^2)\left\langle g,h\right\rangle = z\left\langle u,h\right\rangle -\overline{z}\left\langle g,u\right\rangle \end{aligned}$$

where the scalar product \(\left\langle x,y\right\rangle \mathrel {\mathop :}=[x,Jy]\) and the norm \(\Vert x\Vert ^2\mathrel {\mathop :}=\left\langle x,x\right\rangle \) for all x, \(y\in {\mathfrak {H}}\). If \(g+h=0\) then by the above

$$\begin{aligned} \Vert u\Vert ^2+(1+|z|^2)\Vert g\Vert ^2 +2\Re (z\left\langle u,g\right\rangle )=0. \end{aligned}$$

But by Cauchy–Schwarz

$$\begin{aligned} \Vert u\Vert ^2+(1+|z|^2)\Vert g\Vert ^2 +2\Re (z\left\langle u,g\right\rangle )\geqslant&(\Vert u\Vert -|z|\,\Vert g\Vert )^2+ \Vert g\Vert ^2\\ \geqslant&\Vert g\Vert ^2\geqslant 0 \end{aligned}$$

so that then \(g=0=u\) and \(h=0\).

Suppose now \((G-zI)^{-1}(zI-H)=\{0\}\). Multiplying both sides by \(G-zI\) from the left implies that

$$\begin{aligned} R\mathrel {\mathop :}=({\mathfrak {H}}\times {{\,\textrm{ran}\,}}(G-zI))\cap (zI-H)\subseteq \{0\}\times {{\,\textrm{mul}\,}}G. \end{aligned}$$

Then

$$\begin{aligned} {{\,\textrm{mul}\,}}R={{\,\textrm{ran}\,}}(G-zI)\cap {{\,\textrm{mul}\,}}H\subseteq {{\,\textrm{mul}\,}}G \end{aligned}$$

and then \(R=\{0\}\), since

$$\begin{aligned} {{\,\textrm{mul}\,}}G\cap {{\,\textrm{mul}\,}}H={{\,\textrm{mul}\,}}(G\cap H)=\{0\} \end{aligned}$$

by \(G\bot H\). In particular

$$\begin{aligned} {{\,\textrm{ran}\,}}R={{\,\textrm{ran}\,}}(G-zI)\cap {{\,\textrm{ran}\,}}(H-zI)=\{0\}. \end{aligned}$$

This shows that \({\mathbb {C}}\smallsetminus \sigma _p(G\,\widehat{\oplus }\,H)\subseteq O\). The latter combined with (A.3) yields (A.4), which in turn yields (i) and (ii). \(\square \)

Remark A.4

For closed relations G and H and for \(z\in \rho (G)\cap \rho (H)\), the second equality in (A.2) is given in [7, Lemma 1.7.2].

Lemma A.5

Let G be a relation in a Krein space \({\mathfrak {H}}\). In order that the eigenspaces corresponding to distinct eigenvalues of the adjoint \(G^+\) should be mutually disjoint, that is, \((\forall z,z_0\in {\mathbb {C}})\)

$$\begin{aligned} {\mathfrak {N}}_z(G^+)\cap {\mathfrak {N}}_{z_0}(G^+)=\{0\}\quad \text {if}\quad z\ne z_0 \end{aligned}$$

it is necessary and sufficient that \({{\,\textrm{dom}\,}}G+{{\,\textrm{ran}\,}}G\) should be dense in \({\mathfrak {H}}\).

Proof

Let \(f\in {\mathfrak {N}}_z(G^+)\cap {\mathfrak {N}}_{z_0}(G^+)\), \(z\ne z_0\). Then \((f,zf)\in G^+\) and \((f,z_0f)\in G^+\) implies \(f\in {{\,\textrm{mul}\,}}G^+\cap \ker G^+\). Conversely, if \(f\in {{\,\textrm{mul}\,}}G^+\cap \ker G^+\) then \((\forall w\in {\mathbb {C}})\) \((f,wf)\in G^+\); hence in particular \(f\in {\mathfrak {N}}_z(G^+)\cap {\mathfrak {N}}_{z_0}(G^+)\). Therefore, \({\mathfrak {N}}_z(G^+)\cap {\mathfrak {N}}_{z_0}(G^+)\) for \(z\ne z_0\) is trivial iff \({{\,\textrm{mul}\,}}G^+\cap \ker G^+= ({{\,\textrm{dom}\,}}G+{{\,\textrm{ran}\,}}G)^{[\bot ]}\) is trivial. \(\square \)

Lemma A.6

A closed symmetric operator in a Hilbert space has property (P), see Definition 6.10, iff it is densely.

Proof

Step 1. Let T be a closed symmetric relation in a Hilbert space \({\mathfrak {H}}\). Then \((\forall z\in {\mathbb {C}}_*)\) \({\mathfrak {N}}_z(T^*)\cap {{\,\textrm{dom}\,}}T=\{0\}\). For, if \(f\in {\mathfrak {N}}_z(T^*)\) then \((f,zf)\in T^*\) and if also \(f\in {{\,\textrm{dom}\,}}T\) then \((\exists f^\prime )\) \((f,f^\prime )\in T\), i.e. \(f^\prime -zf\in {{\,\textrm{ran}\,}}(T-zI)\cap {{\,\textrm{mul}\,}}T^*\); but the latter set is trivial, see e.g.[28, Eq. (2.4)].

Step 2. We use the first von Neumann formula

$$\begin{aligned} T^*=T\,\widehat{\oplus }\,\widehat{{\mathfrak {N}}}_\textrm{i}(T^*)\,\widehat{\oplus }\,\widehat{{\mathfrak {N}}}_{-\textrm{i}}(T^*). \end{aligned}$$

Since \({\mathfrak {N}}_{\pm \textrm{i}}(T^*)\cap {{\,\textrm{dom}\,}}T=\{0\}\), \({{\,\textrm{mul}\,}}T^*\) consists of the elements \(f^\prime +\textrm{i}f_\textrm{i}-\textrm{i}f_{-\textrm{i}}\), where \((f,f^\prime )\in T\), \(f_{\pm \textrm{i}}\in {\mathfrak {N}}_{\pm \textrm{i}}(T^*)\), and \(f+f_\textrm{i}+f_{-\textrm{i}}=0\); hence \(f=0\), \(f^\prime \in {{\,\textrm{mul}\,}}T=\{0\}\), and \(f_{-\textrm{i}}=-f_{\textrm{i}}\in {\mathfrak {N}}_{\textrm{i}}(T^*)\cap {\mathfrak {N}}_{-\textrm{i}}(T^*)\). By Lemma A.5\({\mathfrak {N}}_{\textrm{i}}(T^*)\cap {\mathfrak {N}}_{-\textrm{i}}(T^*)= {{\,\textrm{mul}\,}}T^*\cap \ker T^*\), so \({{\,\textrm{mul}\,}}T^*\subseteq {{\,\textrm{mul}\,}}T^*\cap \ker T^*\) implies that \({{\,\textrm{mul}\,}}T^*\cap \ker T^*=\{0\}\) iff \(T^*\) is an operator. \(\square \)

Remark A.7

In Step 1 one could instead use that \((\forall z\in {\mathbb {C}})\)

$$\begin{aligned} {\mathfrak {N}}_z(T^*)\cap {{\,\textrm{dom}\,}}T={\mathfrak {N}}_z (T^*\cap ({{\,\textrm{dom}\,}}T)^2) \end{aligned}$$

and that \(T^*\cap ({{\,\textrm{dom}\,}}T)^2\) is a symmetric relation in a Hilbert space \(\overline{{{\,\textrm{dom}\,}}}T\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juršėnas, R. On the Similarity of Boundary Triples of Symmetric Operators in Krein Spaces. Complex Anal. Oper. Theory 17, 72 (2023). https://doi.org/10.1007/s11785-023-01361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-023-01361-9

Keywords

Mathematics Subject Classification

Navigation