Skip to main content
Log in

Hadamard–Bergman Convolution Operators

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We introduce a convolution form, in terms of integration over the unit disc \(\mathbb {D},\) for operators on functions f in \(H(\mathbb {D})\), which correspond to Taylor expansion multipliers. We demonstrate advantages of the introduced integral representation in the study of mapping properties of such operators. In particular, we prove the Young theorem for Bergman spaces in terms of integrability of the kernel of the convolution. This enables us to refer to the introduced convolutions as Hadamard–Bergman convolution. Another, more important, advantage is the study of mapping properties of a class of such operators in Holder type spaces of holomorphic functions, which in fact is hardly possible when the operator is defined just in terms of multipliers. Moreover, we show that for a class of fractional integral operators such a mapping between Holder spaces is onto. We pay a special attention to explicit integral representation of fractional integration and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergman, S.: Uber die kernfunctionen eines bereiches und verhalten am rande. I. J. Reine Agnew. Math. 169, 1–42 (1933)

    Google Scholar 

  2. Bergman, S.: The Kernel Function and Conformal Mapping, Mathematical Surveys and Monographs, vol. 5, 2nd edn. AMS, Providence (RI) (1970)

    Google Scholar 

  3. Blasco, O.: Multipliers on spaces of analytic functions. Can. J. Math. 47(1), 44–64 (1995)

    Article  MathSciNet  Google Scholar 

  4. Buckley, S., Koskela, P., Vukotic, D.: Fractional integration, differentiation, and weighted Bergman spaces. Math. Proc. Camb. Phil. Soc. 126, 369–385 (1999)

    Article  MathSciNet  Google Scholar 

  5. Buckley, S.M., Ramanujan, M.S., Vukotic, D.: Bounded and compact multipliers between Bergman and Hardy spaces. Integr. Equ. Oper. Theory 35, 1–19 (1999). https://doi.org/10.1007/BF01225524

    Article  MathSciNet  MATH  Google Scholar 

  6. Duren, P., Schuster, A.: Bergman Spaces. American Mathematical Society, Providence (2004)

    Book  Google Scholar 

  7. Grudsky, S.M., Karapetyants, A.N., Vasilevski, N.L.: Dynamics of properties of Toeplitz operators in the weighted Bergman spaces. Sib. Electron. Math. Rep. 3, 362–383 (2006)

    Google Scholar 

  8. Grudsky, S.M., Karapetyants, A.N., Vasilevski, N.L.: Toeplitz operators on the unit ball in \({\mathbb{C}}^n\) with redial symbols. J. Oper. Theory 49(2), 325–346 (2003)

    MATH  Google Scholar 

  9. Grudsky, S., Vasilevski, N.: Bergman–Toeplitz operators: Radial component influence. Int. Equ. Oper. Theory 40, 16–33 (2001)

    Article  MathSciNet  Google Scholar 

  10. Grudsky, S.M., Karapetyants, A.N., Vasilevski, N.L.: Dynamics of properties of Toeplitz operators with radial symbols. Int. Equ. Oper. Theory 50(2), 217–253 (2004). https://doi.org/10.1007/s00020-003-1295-z

    Article  MathSciNet  MATH  Google Scholar 

  11. Hadamard, J.: Essai sur l’etude des fonctions donnees par leur developpement de Taylor. J. de math. pures et appl. Ser. 4(I), 101–186 (1892)

    MATH  Google Scholar 

  12. Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Springer Verlag, New York (2000)

    Book  Google Scholar 

  13. Jerbashian, M.M.: On canonical representation of functions meronorphic in the unit disc. DAN of Armenia. 3, 3–9 (1945)

    Google Scholar 

  14. Jerbashian, M.M.: On the representability problem for analytic functions. Soobsh. Inst. Math. and Mech. AN of Armenia. 2, 3–40 (1948)

    Google Scholar 

  15. Karapetiants, N.K., Samko, S.G.: Equations with an Involutive Operators and Their Applications. Rostov University Publishing House, Rostov-on-Don (1988). (in Russian)

    MATH  Google Scholar 

  16. Karapetiants, N.K., Samko, S.G.: Equations with an Involutive Operators and Their Applications. Birkhauser, Boston (2001)

    Book  Google Scholar 

  17. Karapetiants, N.K., Samko, S.G.: Multi-dimensional integral operators with homogeneous kernels. Fract. Calc. Appl. Anal. 2, 67–96 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Karapetyants, A., Samko, S., Zhu, K.: A Class of Hausdorff-Berezin operators on the unit disc. Complex Anal. Oper. Theory 13, 3853–3870 (2019). https://doi.org/10.1007/s11785-019-00934-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Karapetyants, A., Samko, S.: Generalized Hölder spaces of holomorphic functions in domains in the complex plane. Mediterr. J. Math. 15, 226 (2018)

    Article  Google Scholar 

  20. Luke, Y.L.: The Special Functions and Their Approximation, vol. 1, p. 349. Academy Press, New York (1969)

    Google Scholar 

  21. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, London (1993)

    MATH  Google Scholar 

  22. Vasilevski N.L.: Commutative Algebras of Toeplitz Operators on the Bergman Space. vol. 185: Operator Theory: Advances and Applications (2008)

  23. Vukotic, D., Jevtic, M., Arsenovic, M.: Taylor coefficients and coefficients multipliers of Hardy and Bergman-type spaces, RSME-Springer Series, vol. 2 (2016)

  24. Zhu, K.: Duality of Bloch spaces and norm convergence of Taylor series. Michigan Math. J. 38(1), 89–101 (1991)

    Article  MathSciNet  Google Scholar 

  25. Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Springer Verlag, New York (2004)

    Google Scholar 

  26. Zhu, K.: Operator Theory in Function Spaces, AMS Mathematical Surveys and Monographs 138 (2007)

Download references

Acknowledgements

Alexey Karapetyants is partially supported by the Russian Foundation for Fundamental Research, projects 18-01-00094-a. Research of Stefan Samko was supported by Russian Foundation for Basic Research under the grants 19-01-00223-a, 18-01-00094-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Karapetyants.

Additional information

Communicated by Nikolai Vasilevski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karapetyants, A., Samko, S. Hadamard–Bergman Convolution Operators. Complex Anal. Oper. Theory 14, 77 (2020). https://doi.org/10.1007/s11785-020-01035-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-020-01035-w

Keywords

Mathematics Subject Classification

Navigation