Skip to main content
Log in

A Semigroup Approach to Fractional Poisson Processes

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

It is well-known that fractional Poisson processes (FPP) constitute an important example of a non-Markovian structure. That is, the FPP has no Markov semigroup associated via the customary Chapman–Kolmogorov equation. This is physically interpreted as the existence of a memory effect. Here, solving a difference-differential equation, we construct a family of contraction semigroups \((T_\alpha )_{\alpha \in ]0,1]}\), \(T_\alpha =(T_\alpha (t))_{t\ge 0}\). If \(C([0,\infty [,B(X))\) denotes the Banach space of continuous maps from \([0,\infty [\) into the Banach space of endomorphisms of a Banach space X, it holds that \(T_\alpha \in C([0,\infty [,B(X))\) and \(\alpha \mapsto T_\alpha \) is a continuous map from ]0, 1] into \(C([0,\infty [,B(X))\). Moreover, \(T_1\) becomes the Markov semigroup of a Poisson process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt, W., Batty, C., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in mathematics, vol. 96. Birkhäuser, Basel (2001)

    Book  MATH  Google Scholar 

  2. Barrachina, X., Peris, A.: Distributionally chaotic translation semigroups. J. Differ. Equ. Appl. 18(4), 751–761 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beghin, L., Orsingher, E.: Fractional Poisson processes and related random motions. Electron. J. Probab. 14, 1790–1826 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beghin, L., Orsingher, E.: Poisson-type processes governed by fractional and higher-order recursive differential equations. Electron. J. Probab. 15, 684–709 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  6. Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Order. CISM lecture notes (2008). arXiv:0805.3823

  7. Grosse-Erdmann, K.G., Peris, A.: Linear Chaos. Universitext. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  8. Jumarie, G.: Fractional master equation: non-standard analysis and Liouville–Riemann derivative. Chaos Solitons Fractals 12, 2577–2587 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland mathematics studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  10. Laskin, N.: Fractional Poisson process. Commun. Nonlinear Sci. Numer. Simul. 8, 201–213 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Laskin, N.: Some applications of the fractional Poisson probability distribution. J. Math. Phys 50, 113513 (2009). https://doi.org/10.1063/1.3255535

    Article  MathSciNet  MATH  Google Scholar 

  12. Lizama, C.: The Poisson distribution, abstract fractional difference equations, and stability. Proc. Am. Math. Soc. 145(9), 3809–3827 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mainardi, F., Gorenflo, R., Scalas, E.: A fractional generalization of the Poisson processes. Vietnam J. Math. 32, 53–64 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Mainardi, F., Gorenflo, R., Vivoli, A.: Beyond the Poisson renewal process: a tutorial survey. J. Comput. Appl. Math. 205, 725–735 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600–1620 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied mathematical sciences, vol. 44. Springer, New York (1983)

    MATH  Google Scholar 

  17. Podlubny, I.: Fractional Differential Equations. Mathematics in science and engineering, vol. 198. Academic Press Inc., San Diego (1999)

    MATH  Google Scholar 

  18. Prüss, J.: Evolutionary Integral Equations and Applications. Birkhäuser, Basel (1993)

    Book  MATH  Google Scholar 

  19. Repin, O.N., Saichev, A.I.: Fractional Poisson law. Radiophys. Quantum Electron. 43, 738–741 (2000)

    Article  MathSciNet  Google Scholar 

  20. Samko, S.-G., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993)

    MATH  Google Scholar 

  21. Uchaikin, V.V., Cahoy, D.O., Sibatov, R.T.: Fractional processes: from Poisson to branching one. Int. J. Bifur. Chaos Appl. Sci. Eng. 18, 2717–2725 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Lizama.

Additional information

Communicated by Behrndt, Colombo and Naboko.

Appendix

Appendix

Lemma 3.1

Consider the probability measure \(\mu (dt)=e^{-t}dt\) on the positive real line. Let be given a sequence \((h_n)_{n\in \mathbb {N}}\) of positive integrable functions such that

(H1):

\(h_n (t)\rightarrow h(t)\) almost everywhere as \(n\rightarrow \infty \), h integrable, and

(H2):

\(\int _0^\infty h_n(t)\mu (dt)\rightarrow \int _0^\infty h(t)\mu (dt)\).

Then \((h_n)_{n\in \mathbb {N}}\) is uniformly integrable and \(h_n\rightarrow h\) in \(L^1(\mu )\).

Proof

Take \(c>0\). Then \(h_n1_{\{h_n\le c\}}\rightarrow h1_{\{h\le c\}}\), a.e. by (H1) and \(h_n1_{\{h_n\le c\}}\le c\). Thus, Lebesgue’s dominated convergence theorem implies that

$$\begin{aligned} \int _0^\infty h_n(t)1_{\{h_n\le c\}}(t)\mu (dt)\rightarrow \int _0^\infty h(t)1_{\{h\le c\}}(t)\mu (dt). \end{aligned}$$

And (H2) yields

$$\begin{aligned} \int _{\{h_n>c\}}h_n(t)\mu (dt)\rightarrow \int _{\{h>c\}}h(t)\mu (dt). \end{aligned}$$

So that \(\limsup _n \int _{\{h_n>c\}}h_n(t)\mu (dt)=\int _{\{h>c\}}h(t)\mu (dt).\) Given \(\epsilon >0\), choose \(c_0>0\) to have

$$\begin{aligned} \int _{\{h>c_0\}}h(t)\mu (dt)<\epsilon /2 \end{aligned}$$

and there exists \(n_0\) such that \( \sup _{n\ge n_0}\int _{\{h_n>c_0\}}h_n(t)\mu (dt)<\epsilon .\) Since any finite family of integrable functions is uniformly integrable, so is \((h_1,\ldots ,h_{n_0-1})\), and one obtains the same property for the whole sequence \((h_n)_{n\in \mathbb {N}}\). Finally, the family \((h_n-h)_{n\in \mathbb {N}}\) is uniformly integrable as well, and this sequence converges to 0 a.e. Therefore, \(\Vert h_n-h\Vert _1\rightarrow 0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizama, C., Rebolledo, R. A Semigroup Approach to Fractional Poisson Processes. Complex Anal. Oper. Theory 12, 777–785 (2018). https://doi.org/10.1007/s11785-018-0763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-018-0763-z

Keywords

Mathematics Subject Classification

Navigation