Skip to main content
Log in

The Schur Problem and Block Operator CMV Matrices

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

The block operator CMV matrices and their sub-matrices are applied to the description of all solutions to the Schur interpolation problem for contractive analytic operator-valued functions in the unit disk (the Schur class functions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpay, D.: Algorithme de Schur, espaces a noyau reproduisant et theorie des systemes. (French) Panoramas et Syntheses. 6. Paris: Societe Mathematique de France (1998)

  2. Anderson, W.N.: Shorted operators. SIAM J. Appl. Math. 20, 520–525 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anderson, W.N., Trapp, G.E.: Shorted operators II. SIAM J. Appl. Math. 28, 60–71 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arlinskiĭ, Yu.: The Kalman-Yakubovich-Popov inequality for passive discrete time-invariant systems. Operators and Matrices 2(1), 15–51 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arlinskiĭ, Yu.: Conservative realizations of the functions associated with Schur’s algorithm for the Schur class operator-valued functions. Operators and Matrices. 3(1), 59–96 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arlinskiĭ, Yu.: Conservative discrete time-invariant systems and block operator CMV matrices. Methods of Functional Analysis and Topology. 15(3), 201–236 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Arlinskiĭ, Yu.: Schur parameters, Toeplitz matrices, and Kreĭn shorted operators. Integral Equat. Oper. Theory. 71, 417–453 (2011)

    Article  Google Scholar 

  8. Arlinskiĭ, Yu., Golinskiĭ, L., Tsekanovskiĭ, E.R.: Contractions with rank one defect operators and truncated CMV matrices. Journ. of Funct. Anal. 254, 154–195 (2008)

    Article  Google Scholar 

  9. Arlinskiĭ, Yu.: Truncated Hamburger moment problem for an operator measure with compact support. Mathematische Nachrichten 285(14–15), 1677–1695 (2012)

    Article  MathSciNet  Google Scholar 

  10. Arov, D.Z.: Passive linear stationary dynamical systems. Sibirsk. Math. Journ. 20(2), 211–228 (1979). [Russian]. English translation in Siberian Math. Journ., 20, 149–162. (1979)

  11. Arov, D.Z.: Computation of the resolvent matrix for the generalized bitanential Schur and Caratheodory-Nevanlinna-Pick interpolation problems in the strictly completely inderminate case. Integral Equations Operator Theory 22, 253–272 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Arov, D.Z., Grossman, L.Z.: Scattering matrices in the theory of extensions of isometric operators. Dokl. Akad. Nauk SSSR 270, 17–20 (1983) [Russian]. English trans., Soviet Math. Dokl. 27, 518–522 (1983)

  13. Arov, D.Z., Kreĭn, M.G.: On the computation of entropy functionals and their minima in indeterminate extension problems. Acta Sci. Math 45, 33–50 (1983). (Russian)

    MATH  Google Scholar 

  14. Bakonyi, M., Constantinescu, T.: Schur’s algorithm and several applications. Pitman Research Notes in Mathematics Series, v. 261, Longman Scientific and Technical (1992)

  15. Berezansky, Yu.M., Dudkin, M.: The direct and inverse spectral problems for the block Jacobi matrices. Methods of Functional Analysis and Toplogy 11(4), 327–345 (2005)

    Google Scholar 

  16. Cantero, M.L., Moral, L., Velázquez, L.: Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl. 362, 29–56 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ceausescu, Z., Foias, C.: On intertwining dilations. V. Acta Sci. Math. (Szeged) 40, 9–32 (1978)

    MATH  MathSciNet  Google Scholar 

  18. Ceausescu, Z., Foias, C.: On intertwining dilations. V. Acta Sci. Math. (Szeged) Corrections, 41 (1979)

  19. Constantinscu, T.: Operator Schur algorithm and associated functions. Math. Balcanica 2, 244–252 (1988)

    Google Scholar 

  20. Constantinscu, T.: Schur parameters, factorization and dilation problems. Operator Theory: Advances and Applications, vol. 82. Bikhäuser Verlag, Basel (1996)

    Google Scholar 

  21. Delsarte, Ph., Genin, Y., Kamp, Y.: I. Schur parametrization of positive definite block-Toeplitz systems. SIAM J. Appl. Math. 36(1), 34–46 (1979)

    Google Scholar 

  22. Dubovoj, V.K., Fritzsche, B., Kirstein, B.: Matricial version of the classical Schur problem. Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 129. B.G. Teubner Verlagsgesellschaft mbH, Stuttgart (1992)

  23. Dym, H.: \(J\) contractive matrix functions, reproducing kernel Hilbert spaces and interpolation. Reg. Conf. Ser. Math. 71 (1989)

  24. Foias, C., Frazho, A.E.: The commutant lifting approach to interpolation problems. Operator Theory: Advances and Applications, vol. 44. Birkhäuser, Basel-Boston-Berlin (1990)

    Book  Google Scholar 

  25. Foias, C., Frazho, A.E., Gohberg, I., Kaashoek, M.A.: Metric constrained interpolation, commutant liffting and systems. Operator Theory: Advances and Applications, v. 100, Birkhäuser Basel-Boston-Berlin (1998)

  26. Fritzsche, B., Kirstein, B., Lasarow, A.: The matricial Schur problem in both nondegenerate and degenerate cases. Math. Nachr. 282(2), 180–210 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Katsnel’son, V.E., Kheifets, A.Ja., Yuditskiĭ, P.M.: An abstract interpolation problem and the theory of extensions of isometric operators. Operators in Fuction Spaces and Problem in Function Theory [Russian], Naukova Dumka, Kiev, 83–96 (1987). English translation in Operator Theory: Advances and Appl., 95, 283–298 (1997)

  28. Kheifets, A.Ja.: Parseval equality in abstract interpolation problem and coupling of open systems. Teor. Funktsiĭ, Funktsional. Anal. i Prilozhen 49, 112–120 (1988). [in Russian]. English translation in J. Soviet Math. 49(4), 1114–1120 (1990)

  29. Kheifets, A.Ja.: Parseval equality in abstract interpolation problem and coupling of open systems. Teor. Funktsiĭ, Funktsional. Anal. i Prilozhen 50, 98–103 (1988). [in Russian]. English translation in J. Soviet Math. 49(6), 1307–1310 (1990)

  30. Kheifets, A.: The abstract interpolation problem and applications. Holomorphic spaces. Math. Sci. Res. Inst. Publ., 33, 351–379 (1998). Cambridge University Press, Cambridge

  31. Kheifets, A.: Parametrization of solutions of the Nehari problem and nonorthogonal dynamics. Oper. Theory, Adv. Appl 115, 213–233 (2000)

    MathSciNet  Google Scholar 

  32. Kreĭn, M.G.: Theory of selfadjoint extensions of semibounded operators and its applications.I. Mat. Sb. 20(3), 431–498 (1947). [Russian]

    Google Scholar 

  33. Peller, V.: Hankel operators and their applications. Springer Monographs in Mathematics. Springer- Verlag, New York-Berlin-Heidelberg (2003)

    Book  Google Scholar 

  34. Schur, I.: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, I, II. J. Reine Angew. Math. 147, 205–232 (1917). English translation in I. Schur methods in operator theory and signal processing. Oper. Theory Adv. Appl., 18, Birkhauser, Basel and, Boston (1986)

    Google Scholar 

  35. Schur, I.: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, I, II. J. Reine Angew. Math. 148, 122–145 (1918). English translation in I. Schur methods in operator theory and signal processing. Oper. Theory Adv. Appl., 18, Birkhauser, Basel and, Boston (1986)

    Google Scholar 

  36. Shmul’yan, Yu.L.: Generalized fractional-linear transformations of operator balls. Sibirsk. Mat. Zh. 21(5), 114–131 (1980) [Russian]. English translation in Siberian Mathematical Jour. 21(5), 728–740 (1980)

    Google Scholar 

  37. Shmul’yan, Yu.L.: Certain stability properties for analytic operator-valued functions. Mat. Zametki 20(4), 511–520 (1976) [Russian]. English translation in. Mathematical Notes 20(4), 843–848 (1976)

  38. Simon, B.: Orthogonal polynomials on the unit circle. Part 1. Classical theory, Part 2. Spectral theory. American Mathematical Society Colloquium Publications, Providence, RI (2005)

  39. Sz.-Nagy, B., Foias, C.: Harmonic analysis of operators on Hilbert space, North-Holland, New York (1970)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury Arlinskiĭ.

Additional information

Communicated by Bernd Kirstein.

Appendix A: Special Cases of Block Operator CMV Matrices

Appendix A: Special Cases of Block Operator CMV Matrices

Let \(\{\Gamma _n\}\) be the Schur parameters of the function \(\Theta \in \mathbf{S}(\mathfrak{M },\mathfrak{N })\). Suppose \(\Gamma _m\) is an isometry (respect., co-isometry, unitary) for some \(m\ge 0\). Then \(\Theta _m(z)=\Gamma _m\) for all \(z\in \mathbb{D }\) and

$$\begin{aligned}&\Theta _{m-1}(z)=\Gamma _{m-1}+z D_{\Gamma ^*_{m-1}}\Gamma _m(I_{\mathfrak{D }_{\Gamma _{m-1}}} +z\Gamma ^*_{m-1}\Gamma _m)^{-1}D_{\Gamma _{m-1}},\\&\Theta _{m-2}(z)=\Gamma _{m-2}+z D_{\Gamma ^*_{m-2}}\Theta _{m-1}(z)(I_{\mathfrak{D }_{\Gamma _{m-2}}}+ z\Gamma ^*_{m-2}\Theta _{m-1}(z))^{-1}D_{\Gamma _{m-2}},\\&\ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots ,\\&\Theta (z)=\Gamma _{0}+z D_{\Gamma ^*_{0}}\Theta _{1}(z)(I_{\mathfrak{D }_{\Gamma _0}}+ z\Gamma ^*_{0}\Theta _{1}(z))^{-1}D_{\Gamma _{0}},\; z\in \mathbb{D }. \end{aligned}$$

The function \(\Theta \) is the transfer function of the simple conservative systems constructed by means of its Schur parameters \(\{\Gamma _n\}\) and the corresponding block operator CMV matrices \(\mathcal{U }_0\) and \(\widetilde{\mathcal{U }}_0\) [6]. Here we present the explicit form of block operator CMV and truncated CMV matrices. In particular we revise some misprints in [6]. Notice that if \(\Gamma _m\) is isometric (respect., co-isometric), then

  1. 1.

    \(\mathfrak{D }_{\Gamma ^*_n}=\mathfrak{D }_{\Gamma ^*_{m}}, D_{\Gamma ^*_{n}}=I_{\mathfrak{D }_{\Gamma ^*_{m}}}, \Gamma _n=0:\{0\}\rightarrow \mathfrak{D }_{\Gamma ^*_{m}}\) for \(n> m\) (respect., \(\mathfrak{D }_{\Gamma _n}=\mathfrak{D }_{\Gamma _{m}}, D_{\Gamma _{n}}=I_{\mathfrak{D }_{\Gamma _{m}}}, \Gamma _n=0:\mathfrak{D }_{\Gamma _n}\rightarrow \{0\}\) for \(n> m\));

  2. 2.

    in the definitions of the state spaces \(\mathfrak{H }_0=\mathfrak{H }_0(\{\Gamma _n\}_{n\ge 0})\) and \(\widetilde{\mathfrak{H }}_0=\widetilde{\mathfrak{H }}_0(\{\Gamma _n\}_{n\ge 0})\) we replace \(\mathfrak{D }_{\Gamma _n}\) with \(\{0\}\) (respect., \(\mathfrak{D }_{\Gamma ^*_n}\) with \(\{0\}\)) for \(n\ge m\), and \(\mathfrak{D }_{\Gamma ^*_n}\) by \(\mathfrak{D }_{\Gamma ^*_m}\) (respect., \(\mathfrak{D }_{\Gamma _n}\) by \(\mathfrak{D }_{\Gamma _m}\)) for \(n> m\).

  3. 3.

    the corresponding unitary elementary rotation takes the row (respect., the column) form, i.e,

    $$\begin{aligned} \mathbf{J}^{(r)}_{\Gamma _0}&= \begin{bmatrix} \Gamma _0&I_{\mathfrak{D }_{\Gamma ^*_0}} \end{bmatrix}: \begin{array}{l} \mathfrak{M }\\ \oplus \\ \mathfrak{D }_{\Gamma ^*_{0}} \end{array}\rightarrow \mathfrak{N }\\&\times \left( {\mathrm{respect}},\;\mathbf{J}^{(c)}_{\Gamma _0}=\begin{bmatrix} \Gamma _0\\D_{\Gamma _0} \end{bmatrix}: \mathfrak{M }\rightarrow \begin{array}{l} \mathfrak{N }\\ \oplus \\ \mathfrak{D }_{\Gamma _{0}} \end{array}\right) ,\\ \mathbf{J}^{(r)}_{\Gamma _m}&= \begin{bmatrix} \Gamma _m&I_{\mathfrak{D }_{\Gamma ^*_m}} \end{bmatrix}: \begin{array}{l} \mathfrak{D }_{\Gamma _{m-1}}\\ \oplus \\ \mathfrak{D }_{\Gamma ^*_{m}}\end{array} \rightarrow \mathfrak{D }_{\Gamma ^*_{m-1}}\\&\times \left( {\mathrm{respect.}},\; \mathbf{J}^{(c)}_{\Gamma _m}= \begin{bmatrix} \Gamma _m\\D_{\Gamma _m} \end{bmatrix}: \mathfrak{D }_{\Gamma _{m-1}}\rightarrow \begin{array}{l} \mathfrak{D }_{\Gamma ^*_{m-1}}\\ \oplus \\ \mathfrak{D }_{\Gamma _{m}} \end{array}\right) ,\; m\ge 1. \end{aligned}$$

Therefore, in definitions (3.1) of the block diagonal operator matrices

$$\begin{aligned} \mathcal{L }_0=\mathcal{L }_0(\{\Gamma _n\}_{n\ge 0}),\; \mathcal{M }_0=\mathcal{M }_0(\{\Gamma _n\}_{n\ge 0}),\;{\mathrm{and}}\; \widetilde{\mathcal{M }}_0=\widetilde{\mathcal{M }}_0(\{\Gamma _n\}_{n\ge 0}) \end{aligned}$$

we will replace

  • \(\mathbf{J}_{\Gamma _m}\) by \(\mathbf{J}^{(r)}_{\Gamma _m}\) and \(\mathbf{J}_{\Gamma _n}\) by \(I_{\mathfrak{D }_{\Gamma ^*_m}}\) for \(n>m\), when \(\Gamma _m\) is isometry,

  • \(\mathbf{J}_{\Gamma _m}\) by \(\mathbf{J}^{(c)}_{\Gamma _m}\), and \(\mathbf{J}_{\Gamma _n}\) by \(I_{\mathfrak{D }_{\Gamma _m}}\) for \(n>m\), when \(\Gamma _m\) is co-isometry,

  • \(\mathbf{J}_{\Gamma _m}\) by \(\Gamma _m\), when \(\Gamma _m\) is unitary.

In all these cases the block operators CMV matrices \(\mathcal{U }_0=\mathcal{U }_0(\{\Gamma _n\}_{n\ge 0})\) and \(\widetilde{\mathcal{U }}_0=\widetilde{\mathcal{U }}_0(\{\Gamma _n\}_{n\ge 0})\) are defined by means the products \(\mathcal{U }_0=\mathcal{L }_0\mathcal{M }_0,\;\widetilde{\mathcal{U }}_0=\widetilde{\mathcal{M }}_0\mathcal{L }_0.\) These matrices are five block-diagonal. In the case when the operator \(\Gamma _m\) is unitary the block operator CMV matrices \(\mathcal{U }_0\) and \(\widetilde{\mathcal{U }}_0\) are finite and otherwise they are semi-infinite. As before the truncated block operator CMV matrices \(\mathcal{T }_0=\mathcal{T }_0((\{\Gamma _n\}_{n\ge 0})\) and \(\widetilde{\mathcal{T }}_0=\widetilde{\mathcal{T }}_0(\{\Gamma _n\}_{n\ge 0})\) are defined by (3.10) and (3.11), i.e.,

$$\begin{aligned} \mathcal{T }_0=P_{\mathfrak{H }_0}\mathcal{U }_0{\upharpoonright \,}\mathfrak{H }_0,\;\widetilde{\mathcal{T }}_0=P_{\widetilde{\mathfrak{H }}_0}\widetilde{\mathcal{U }}_0{\upharpoonright \,}\widetilde{\mathfrak{H }}_0. \end{aligned}$$

The operators \(\mathcal{T }_0\) and \(\widetilde{\mathcal{T }}_0\) are unitarily equivalent completely non-unitary contractions and Proposition 3.2 hold true. The operators given by truncated block operator CMV matrices \(\mathcal{T }_m\) and \(\widetilde{\mathcal{T }}_m\) obtaining from \(\mathcal{U }_0\) and \(\widetilde{\mathcal{U }}_0\) by deleting first \(m+1\) rows and \(m+1\) columns are

  • co-shifts of the form

    $$\begin{aligned} \mathcal{T }_m=\widetilde{\mathcal{T }}_m=\begin{bmatrix} 0&I_{\mathfrak{D }_{\Gamma ^*_m}}&0&0&\ldots \\0&0&I_{\mathfrak{D }_{\Gamma ^*_m}}&0&\ldots \\0&0&0&I_{\mathfrak{D }_{\Gamma ^*_m}}&\ldots \\\vdots&\vdots&\vdots&\vdots&\vdots \end{bmatrix}:\begin{array}{l} \mathfrak{D }_{\Gamma ^*_m}\\ \oplus \\ \mathfrak{D }_{\Gamma ^*_m}\\ \oplus \\ \vdots \end{array} \rightarrow \begin{array}{l} \mathfrak{D }_{\Gamma ^*_m}\\ \oplus \\ \mathfrak{D }_{\Gamma ^*_m}\\ \oplus \\ \vdots \end{array}, \end{aligned}$$

    when \(\Gamma _m\) is isometry,

  • the unilateral shifts of the form

    $$\begin{aligned} \mathcal{T }_m=\widetilde{\mathcal{T }}_m=\begin{bmatrix}0&0&0&0&\ldots \\I_{\mathfrak{D }_{\Gamma _m}}&0&0&0&\ldots \\0&I_{\mathfrak{D }_{\Gamma _m}}&0&0&\ldots \\\vdots&\vdots&\vdots&\vdots&\vdots \end{bmatrix}:\begin{array}{l} \mathfrak{D }_{\Gamma _m}\\ \oplus \\ \mathfrak{D }_{\Gamma _m}\\ \oplus \\ \vdots \end{array}\rightarrow \begin{array}{l} \mathfrak{D }_{\Gamma _m}\\ \oplus \\ \mathfrak{D }_{\Gamma _m}\\ \oplus \\ \vdots \end{array}, \end{aligned}$$

    when \(\Gamma _m\) is co-isometry.

One can see that Proposition 3.2 remains true.

The conservative systems

$$\begin{aligned} \zeta _0=\{\mathcal{U }_0;\mathfrak{M },\mathfrak{N },\mathfrak{H }_0\},\;\widetilde{\zeta }_0=\{\widetilde{\mathcal{U }}_0;\mathfrak{M },\mathfrak{N },\widetilde{\mathfrak{H }}_0\}. \end{aligned}$$

are simple and unitarily equivalent and, moreover, Theorem 3.3 remains valid.

In order to obtain precise forms of \(\mathcal{U }_0, \widetilde{\mathcal{U }}_0, \mathcal{T }_0\), and \(\widetilde{\mathcal{T }}_0\) one can consider the following cases:

  1. 1.

    \(\Gamma _{2N}\) is isometric (co-isometric) for some \(N\),

  2. 2.

    \(\Gamma _{2N+1}\) is isometric (co-isometric) for some \(N\),

  3. 3.

    the operator \(\Gamma _{2N}\) is unitary for some \(N\),

  4. 4.

    the operator \(\Gamma _{2N+1}\) is unitary for some \(N\).

In the following we consider all these situations and will give the forms of truncated CMV matrices. We use the sub-matrices defined by (4.3) and (4.4).

1.1 A.1 \(\Gamma _{2N}\) is Isometric

Define

$$\begin{aligned} \mathfrak{H }_0&= \widetilde{\mathfrak{H }}_0=\mathfrak{D }_{\Gamma ^*_0}\bigoplus \mathfrak{D }_{\Gamma ^*_0}\bigoplus \cdots ,\; {\mathrm{if}}\quad N=0,\\ \mathfrak{H }_0&= \left( \bigoplus \limits _{n=0}^{N-1}\begin{array}{l} \mathfrak{D }_{\Gamma _{2n}}\\ \oplus \\ \mathfrak{D }_{\Gamma ^*_{2n+1}} \end{array}\right) \bigoplus \mathfrak{D }_{\Gamma ^*_{2N}}\bigoplus \mathfrak{D }_{\Gamma ^*_{2N}} \bigoplus \cdots \bigoplus \mathfrak{D }_{\Gamma ^*_{2N}}\bigoplus \cdots ,\\ \widetilde{\mathfrak{H }}_0&= \left( \bigoplus \limits _{n=0}^{N-1} \begin{array}{l} \mathfrak{D }_{\Gamma ^*_{2n}}\\ \oplus \\ \mathfrak{D }_{\Gamma _{2n+1}} \end{array}\right) \bigoplus \mathfrak{D }_{\Gamma ^*_{2N}}\bigoplus \mathfrak{D }_{\Gamma ^*_{2N}} \bigoplus \cdots \bigoplus \mathfrak{D }_{\Gamma ^*_{2N}}\bigoplus \cdots , \quad N\ge 1. \end{aligned}$$

Define the unitary operators

$$\begin{aligned} \mathcal{M }_0&= I_{\mathfrak{M }\oplus \mathfrak{H }_0},\;\widetilde{\mathcal{M }}_0=I_{\mathfrak{N }\oplus \mathfrak{H }_0},\; N=0,\\ \mathcal{M }_0&= I_\mathfrak{M }\bigoplus \left( \bigoplus \limits _{n=1}^{N}\mathbf{J}_{\Gamma _{2n-1}}\right) \bigoplus I_{\mathfrak{D }_{\Gamma ^*_{2N}}}\bigoplus I_{\mathfrak{D }_{\Gamma ^*_{2N}}}\bigoplus \cdots :\mathfrak{M }\bigoplus \mathfrak{H }_0\rightarrow \mathfrak{M }\bigoplus \widetilde{\mathfrak{H }}_0\\ \widetilde{\mathcal{M }}_0&= I_\mathfrak{N }\bigoplus \left( \bigoplus \limits _{n=1}^{N}\mathbf{J}_{\Gamma _{2n-1}}\right) \bigoplus I_{\mathfrak{D }_{\Gamma ^*_{2N}}}\bigoplus I_{\mathfrak{D }_{\Gamma ^*_{2N}}}\bigoplus \cdots :\mathfrak{N }\bigoplus \mathfrak{H }_0\rightarrow \mathfrak{N }\bigoplus \widetilde{\mathfrak{H }}_0,\\&N\ge 1. \end{aligned}$$

The unitary operator \(\mathcal{L }_0:\mathfrak{M }\bigoplus \widetilde{\mathfrak{H }}_0\rightarrow \mathfrak{N }\bigoplus \mathfrak{H }_0\) is defined as follows

$$\begin{aligned} \mathcal{L }_0=\left\{ \begin{array}{l} \mathbf{J}^{(r)}_{\Gamma _0}\bigoplus I_{\mathfrak{D }_{\Gamma ^*_0}}\bigoplus I_{\mathfrak{D }_{\Gamma ^*_0}}\bigoplus \cdots ,\quad N=0,\\ \mathbf{J}_{\Gamma _0}\bigoplus \mathbf{J}^{(r)}_{\Gamma _2}\bigoplus I_{\mathfrak{D }_{\Gamma ^*_{2}}}\bigoplus I_{\mathfrak{D }_{\Gamma ^*_{2}}}\bigoplus \cdots ,\;{\mathrm{if}}\quad N=1,\\ \mathbf{J}_{\Gamma _0}\bigoplus \left( \bigoplus \limits _{n=1}^{N-1}\mathbf{J}_{\Gamma _{2n}}\right) \bigoplus \mathbf{J}^{(r)}_{\Gamma _{2N}} \bigoplus I_{\mathfrak{D }_{\Gamma ^*_{2N}}}\bigoplus I_{\mathfrak{D }_{\Gamma ^*_{2N}}}\bigoplus \cdots ,\;{\mathrm{if}}\quad N\ge 2 \end{array}\right. . \end{aligned}$$

Define \(\mathcal{U }_0=\mathcal{L }_0\mathcal{M }_0, \widetilde{\mathcal{U }}_0=\widetilde{\mathcal{M }}_0\mathcal{L }_0.\) In particular, if the operator \(\Gamma _0\) is isometric, then

$$\begin{aligned} \mathcal{U }_0=\widetilde{\mathcal{U }}_0=\begin{bmatrix} \Gamma _0&I_{\mathfrak{D }_{\Gamma ^*_0}}&0&0&0&0&\ldots \\0&0&I_{\mathfrak{D }_{\Gamma ^*_0}}&0&0&0&\ldots \\0&0&0&I_{\mathfrak{D }_{\Gamma ^*_0}}&0&0&\ldots \\0&0&0&0&I_{\mathfrak{D }_{\Gamma ^*_0}}&0&\ldots \\\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots \end{bmatrix}. \end{aligned}$$

The block operator truncated CMV matrices \(\mathcal{T }_0\) and \(\widetilde{\mathcal{T }}_0\) are the products (for \(N\ge 1\)):

$$\begin{aligned} \mathcal{T }_0&= \left( {-\Gamma ^*_0}\oplus \left( \bigoplus \limits _{n=1}^{N-1}\mathbf{J}_{\Gamma _{2n}}\right) \oplus \mathbf{J}^{(r)}_{\Gamma _{2N}} \oplus I_{\mathfrak{D }_{\Gamma ^*_{2N}}}\oplus I_{\mathfrak{D }_{\Gamma ^*_{2N}}}\oplus \cdots \right) \\&\times \left( \left( \bigoplus \limits _{n=1}^{N}\mathbf{J}_{\Gamma _{2n-1}}\right) \oplus I_{\mathfrak{D }_{\Gamma ^*_{2N}}}\oplus I_{\mathfrak{D }_{\Gamma ^*_{2N}}}\oplus \cdots \right) ,\\ \widetilde{\mathcal{T }}_0&= \left( \left( \bigoplus \limits _{n=1}^{N}\mathbf{J}_{\Gamma _{2n-1}}\right) \oplus I_{\mathfrak{D }_{\Gamma ^*_{2N}}}\oplus I_{\mathfrak{D }_{\Gamma ^*_{2N}}}\oplus \cdots \right) \\&\times \left( {-\Gamma ^*_0}\oplus \left( \bigoplus \limits _{n=1}^{N-1}\mathbf{J}_{\Gamma _{2n}}\right) \oplus \mathbf{J}^{(r)}_{\Gamma _{2N}} \oplus I_{\mathfrak{D }_{\Gamma ^*_{2N}}}\oplus I_{\mathfrak{D }_{\Gamma ^*_{2N}}}\oplus \cdots \right) . \end{aligned}$$

Calculations give

$$\begin{aligned} \mathcal{T }_0&= \left[ \begin{array}{c|c} {\mathcal{S }_{N-1}}&{} \begin{array}{c@{\quad }c@{\quad }c} 0&{}0&{}\ldots \\ \vdots &{}\vdots &{}\vdots \\ 0&{}0&{}\ldots \\ I_{\mathfrak{D }_{\Gamma ^*_{2N}}}&{}0&{}\ldots \end{array}\\ \hline \mathbf{0}&{} \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0&{}I_{\mathfrak{D }_{\Gamma ^*_{2N}}}&{}0&{}0&{}\ldots \\ 0&{}0&{}I_{\mathfrak{D }_{\Gamma ^*_{2N}}}&{}0&{}\ldots \\ \vdots &{}\vdots &{}\vdots &{}\vdots &{}\vdots \end{array} \end{array} \right] ,\\ \widetilde{\mathcal{T }}_0&= \left[ \begin{array}{c|c} {\widetilde{\mathcal{S }}_{N-1}}&{} \begin{array}{c@{\quad }c@{\quad }c} 0&{}0&{}\ldots \\ \vdots &{}\vdots &{}\vdots \\ 0&{}0&{}\ldots \\ D_{\Gamma ^*_{2N-1}}&{}0&{}\ldots \\ -\Gamma ^*_{2N-1}&{}0&{}\ldots \end{array}\\ \hline \mathbf{0}&{} \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0&{}I_{\mathfrak{D }_{\Gamma ^*_{2N}}}&{}0&{}0&{}\ldots \\ 0&{}0&{}I_{\mathfrak{D }_{\Gamma ^*_{2N}}}&{}0&{}\ldots \\ \vdots &{}\vdots &{}\vdots &{}\vdots &{}\vdots \end{array} \end{array} \right] . \end{aligned}$$

1.2 A.2 \(\Gamma _{2N}\) is Co-isometric

Then \(\Gamma _{n}=0, \mathfrak{D }_{\Gamma _{n}}=\mathfrak{D }_{\Gamma _{2N}}, D_{\Gamma _{n}}=I_{\mathfrak{D }_{\Gamma _{2N}}}\) for \(n> 2N\). Define

$$\begin{aligned} \mathfrak{H }_0&= \widetilde{\mathfrak{H }}_0=\bigoplus \limits _{n=0}^\infty \mathfrak{D }_{\Gamma _0},\; {\mathrm{if}}\quad N=0,\\ \mathfrak{H }_0&= \left( \bigoplus \limits _{n=0}^{N-1}\begin{array}{l} \mathfrak{D }_{\Gamma _{2n}}\\ \oplus \\ \mathfrak{D }_{\Gamma ^*_{2n+1}} \end{array}\right) \bigoplus \mathfrak{D }_{\Gamma _{2N}}\bigoplus \mathfrak{D }_{\Gamma _{2N}} \bigoplus \cdots \bigoplus \mathfrak{D }_{\Gamma _{2N}}\bigoplus \cdots ,\\ \widetilde{\mathfrak{H }}_0&= \left( \bigoplus \limits _{n=0}^{N-1} \begin{array}{l} \mathfrak{D }_{\Gamma ^*_{2n}}\\ \oplus \\ \mathfrak{D }_{\Gamma _{2n+1}} \end{array}\right) \bigoplus \mathfrak{D }_{\Gamma _{2N}}\bigoplus \mathfrak{D }_{\Gamma _{2N}} \bigoplus \cdots \bigoplus \mathfrak{D }_{\Gamma _{2N}}\bigoplus \cdots ,\;{\mathrm{if}}\quad N\ge 1. \end{aligned}$$

Define the unitary operators \(\mathcal{L }_0:\mathfrak{M }\bigoplus \widetilde{\mathfrak{H }}_0\rightarrow \mathfrak{N }\bigoplus \mathfrak{H }_0, \mathcal{M }_0:\mathfrak{M }\bigoplus \mathfrak{H }_0\rightarrow \mathfrak{M }\bigoplus \widetilde{\mathfrak{H }}_0\), and \(\widetilde{\mathcal{M }}_0:\mathfrak{N }\bigoplus \mathfrak{H }_0\rightarrow \mathfrak{N }\bigoplus \widetilde{\mathfrak{H }}_0\) as follows

$$\begin{aligned} \mathcal{L }_0&= \mathbf{J}^{(c)}_{\Gamma _0}\bigoplus I_{\mathfrak{D }_{\Gamma _0}}\bigoplus I_{\mathfrak{D }_{\Gamma _0}}\bigoplus \cdots \;{\mathrm{if}}\quad N=0,\\ \mathcal{L }_0&= \mathbf{J}_{\Gamma _0}\bigoplus \left( \bigoplus \limits _{n=0}^{N-1}\mathbf{J}_{\Gamma _{2n}}\right) \bigoplus \mathbf{J}^{(c)}_{\Gamma _{ 2N}} \bigoplus I_{\mathfrak{D }_{\Gamma _{2N}}}\bigoplus I_{\mathfrak{D }_{\Gamma _{2N}}}\bigoplus \cdots ,\;{\mathrm{if}}\quad N\ge 1,\\ \mathcal{M }_0&= I_\mathfrak{M }\bigoplus I_{\mathfrak{D }_{\Gamma _0}}\bigoplus I_{\mathfrak{D }_{\Gamma _0}}\bigoplus \cdots \;{\mathrm{if}}\quad N=0,\\ \mathcal{M }_0&= I_\mathfrak{M }\bigoplus \left( \bigoplus \limits _{n=1}^{N}\mathbf{J}_{\Gamma _{2n-1}}\right) \bigoplus I_{\mathfrak{D }_{\Gamma _{2N}}}\bigoplus I_{\mathfrak{D }_{\Gamma _{2N}}}\bigoplus \cdots ,\;{\mathrm{if}}\quad N\ge 1, \\ \widetilde{\mathcal{M }}_0&= I_\mathfrak{N }\bigoplus I_{\mathfrak{D }_{\Gamma _0}}\bigoplus I_{\mathfrak{D }_{\Gamma _0}}\bigoplus \cdots \;{\mathrm{if}}\quad N=0,\\ \widetilde{\mathcal{M }}_0&= I_\mathfrak{N }\bigoplus \left( \bigoplus \limits _{n=1}^{N}\mathbf{J}_{\Gamma _{2n-1}}\right) \bigoplus I_{\mathfrak{D }_{\Gamma _{2N}}}\bigoplus I_{\mathfrak{D }_{\Gamma _{2N}}}\bigoplus \cdots ,\;{\mathrm{if}}\quad N\ge 1. \end{aligned}$$

Finally define \(\mathcal{U }_0=\mathcal{L }_0\mathcal{M }_0\) and \(\widetilde{\mathcal{U }}_0=\widetilde{\mathcal{M }}_0\mathcal{L }_0\).

In particular, if the operator \(\Gamma _{0}\) is co-isometric, then \(\mathfrak{H }_0\!=\!\widetilde{\mathfrak{H }}_0\!=\!\mathfrak{D }_{\Gamma _0}\bigoplus \mathfrak{D }_{\Gamma _0}\bigoplus \cdots ,\)

$$\begin{aligned} \mathcal{M }_0&= I_{\mathfrak{M }\oplus \mathfrak{H }_0},\; \widetilde{\mathcal{M }}_0=I_{\mathfrak{N }\oplus \mathfrak{H }_0},\; \mathcal{L }_0=\mathbf{J}^{(c)}_{\Gamma _0}\bigoplus I_{\mathfrak{D }_{\Gamma _0}}\bigoplus I_{\mathfrak{D }_{\Gamma _0}}\bigoplus \cdots ,\\ \mathcal{U }_0&= \widetilde{\mathcal{U }}_0=\begin{bmatrix} \Gamma _0&0&0&0&\ldots \\D_{\Gamma _0}&0&0&0&\ldots \\0&I_{\mathfrak{D }_{\Gamma _0}}&0&0&\ldots \\0&0&I_{\mathfrak{D }_{\Gamma _0}}&0&\ldots \\\vdots&\vdots&\vdots&\vdots&\vdots \end{bmatrix}. \end{aligned}$$

If \(N\ge 1\), then truncated CMV matrices \(\mathcal{T }_0\) and \(\widetilde{\mathcal{T }}_0\) are of the form

$$\begin{aligned} \mathcal{T }_0&= \left[ \begin{array}{c|c} {\mathcal{S }_{N-1}}&{}\mathbf{0}\\ \hline \begin{array}{ccccc} 0&{}\ldots &{}0&{}D_{\Gamma _{2N}}D_{\Gamma _{2N-1}}&{}-D_{\Gamma _{2N}}\Gamma ^*_{2N-1} \\ 0&{}\ldots &{}0&{}0&{}0\\ \vdots &{}\vdots &{}\vdots &{}\vdots &{}\vdots \end{array}&{} \begin{array}{cccc} 0&{}0&{}0&{}\ldots \\ I_{\mathfrak{D }_{\Gamma _{2N}}}&{}0&{}0&{}\ldots \\ 0&{}I_{\mathfrak{D }_{\Gamma _{2N}}}&{}0&{}\ldots \\ \vdots &{}\vdots &{}\vdots &{}\vdots \end{array} \end{array} \right] ,\\&\quad \widetilde{\mathcal{T }}_0=\left[ \begin{array}{c|c} {\widetilde{\mathcal{S }}_{N-1}}&{}\mathbf{0}\\ \hline \begin{array}{ccccc} 0&{}0&{}\ldots &{}0&{}D_{\Gamma _{2N}} \\ 0&{}0&{}\ldots &{}0&{}0\\ \vdots &{}\vdots &{}\vdots &{}\vdots &{}\vdots \end{array}&{} \begin{array}{cccc} 0&{}0&{}0&{}\ldots \\ I_{\mathfrak{D }_{\Gamma _{2N}}}&{}0&{}0&{}\ldots \\ 0&{}I_{\mathfrak{D }_{\Gamma _{2N}}}&{}0&{}\ldots \\ \vdots &{}\vdots &{}\vdots &{}\vdots \end{array} \end{array} \right] . \end{aligned}$$

1.3 A.3 \(\Gamma _{2N+1}\) is Isometric

In this case \(\Gamma _{n}=0, \mathfrak{D }_{\Gamma ^*_{n}}=\mathfrak{D }_{\Gamma ^*_{2N+1}}, D_{\Gamma ^*_{n}}=I_{\mathfrak{D }_{\Gamma ^*_{2N+1}}}\) for \(n> 2N+1\). Define

$$\begin{aligned} \small \mathfrak{H }_0&= \left( \bigoplus \limits _{n=0}^{N}\begin{array}{l} \mathfrak{D }_{\Gamma _{2n}}\\ \oplus \\ \mathfrak{D }_{\Gamma ^*_{2n+1}} \end{array} \right) \bigoplus \mathfrak{D }_{\Gamma ^*_{2N+1}}\bigoplus \mathfrak{D }_{\Gamma ^*_{2N+1}}\bigoplus \ldots \bigoplus \mathfrak{D }_{\Gamma ^*_{2N+1}}\bigoplus \cdots ,\\ \widetilde{\mathfrak{H }}_0&= \mathfrak{D }_{\Gamma ^*_0}\bigoplus \mathfrak{D }_{\Gamma ^*_1} \bigoplus \mathfrak{D }_{\Gamma ^*_1}\bigoplus \cdots \bigoplus \mathfrak{D }_{\Gamma ^*_1}\bigoplus \cdots ,\quad {\mathrm{if}}\quad N=0,\\ \widetilde{\mathfrak{H }}_0\!&= \!\left( \bigoplus \limits _{n=0}^{N-1}\begin{array}{l} \mathfrak{D }_{\Gamma ^*_{2n}}\\ \oplus \\ \mathfrak{D }_{\Gamma _{2n+1}} \end{array}\right) \bigoplus \mathfrak{D }_{\Gamma ^*_{2N}}\bigoplus \mathfrak{D }_{\Gamma ^*_{2N+1}} \bigoplus \cdots \bigoplus \mathfrak{D }_{\Gamma ^*_{2N+1}}\bigoplus \cdots ,\quad {\mathrm{if}}\quad N{\ge } 1. \end{aligned}$$

Define the unitary operators

$$\begin{aligned} \mathcal{M }_0&={\left\{ \begin{array}{ll}I_\mathfrak{M }\bigoplus \mathbf{J}^{(r)}_{\Gamma _1} \bigoplus I _{\mathfrak{D }_{\Gamma ^*_1}}\bigoplus I_{\mathfrak{D }_{\Gamma ^*_1}}\bigoplus \cdots (N=0),\\ I_\mathfrak{M }\bigoplus \left( \bigoplus \limits _{n=1}^{N}\mathbf{J}_{\Gamma _{2n-1}}\right) \bigoplus \mathbf{J}^{(r)}_{\Gamma _{2N+1}} \bigoplus I_{\mathfrak{D }_{\Gamma ^*_{2N+1}}} \bigoplus I_{\mathfrak{D }_{\Gamma ^*_{2N+1}}}\bigoplus \cdots (N\ge 1),\end{array}\right. }\\ \mathcal{L }_0&={\left\{ \begin{array}{ll}\mathbf{J}_{\Gamma _0}\bigoplus I _{\mathfrak{D }_{\Gamma ^*_1}}\bigoplus I_{\mathfrak{D }_{\Gamma ^*_1}}\bigoplus \cdots (N=0),\\ \mathbf{J}_{\Gamma _0}\bigoplus \left( \bigoplus \limits _{n=1}^{N}\mathbf{J}_{\Gamma _{2n}}\right) \bigoplus I_{\mathfrak{D }_{\Gamma ^*_{2N+1}}}\bigoplus I_{\mathfrak{D }_{\Gamma ^*_{2N+1}}} \bigoplus \ldots (N\ge 1),\end{array}\right. }\\ \widetilde{\mathcal{M }}_0&={\left\{ \begin{array}{ll} I_\mathfrak{N }\bigoplus \mathbf{J}^{(r)}_{\Gamma _1} \bigoplus I _{\mathfrak{D }_{\Gamma ^*_1}}\bigoplus I_{\mathfrak{D }_{\Gamma ^*_1}}\bigoplus \cdots (N=0),\\ I_\mathfrak{N }\bigoplus \left( \bigoplus \limits _{n=1}^{N}\mathbf{J}_{\Gamma _{2n-1}}\right) \bigoplus \mathbf{J}^{(r)}_{\Gamma _{2N+1}} \bigoplus I_{\mathfrak{D }_{\Gamma ^*_{2N+1}}}\bigoplus I_{\mathfrak{D }_{\Gamma ^*_{2N+1}}}\bigoplus \cdots (N\ge 1).\end{array}\right. } \end{aligned}$$

Define \(\mathcal{U }_0=\mathcal{L }_0\mathcal{M }_0\) and \(\widetilde{\mathcal{U }}_0=\widetilde{\mathcal{M }}_0\mathcal{L }_0\).

If the operator \(\Gamma _1\) is isometric, then

$$\begin{aligned} \mathfrak{H }_0&= \begin{array}{l} \mathfrak{D }_{\Gamma _{0}}\\ \oplus \\ \mathfrak{D }_{\Gamma ^*_{1}}\end{array}\bigoplus \mathfrak{D }_{\Gamma ^*_{1}}\bigoplus \mathfrak{D }_{\Gamma ^*_{1}}\bigoplus \cdots \bigoplus \mathfrak{D }_{\Gamma ^*_{1}}\bigoplus \cdots ,\\ \widetilde{\mathfrak{H }}_0&= \mathfrak{D }_{\Gamma ^*_0}\bigoplus \mathfrak{D }_{\Gamma ^*_1}\bigoplus \mathfrak{D }_{\Gamma ^*_1}\bigoplus \cdots \bigoplus \mathfrak{D }_{\Gamma ^*_1}\bigoplus \cdots ,\\ \mathcal{U }_0&= \begin{bmatrix} \Gamma _0&\quad D_{\Gamma ^*_0}\Gamma _1&\quad D_{\Gamma ^*_0}&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad \ldots \\ D_{\Gamma _0}&\quad -\Gamma ^*_0\Gamma _1&\quad -\Gamma ^*_0&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad \ldots \\ 0&\quad 0&\quad 0&\quad I_{\mathfrak{D }_{\Gamma ^*_1}}&\quad 0&\quad 0&\quad 0&\quad 0&\quad \ldots \\ 0&\quad 0&\quad 0&\quad 0&\quad I_{\mathfrak{D }_{\Gamma ^*_1}}&\quad 0&\quad 0&\quad 0&\quad \ldots \\ 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad I_{\mathfrak{D }_{\Gamma ^*_1}}&\quad 0&\quad 0&\quad \ldots \\ \vdots&\quad \vdots&\quad \vdots&\quad \vdots&\quad \vdots&\quad \vdots&\quad \vdots&\quad \vdots&\quad \vdots \end{bmatrix},\\ \widetilde{\mathcal{U }}_0&= \begin{bmatrix}\Gamma _0&\quad D_{\Gamma ^*_0}&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad \ldots \\ \Gamma _1D_{\Gamma _0}&\quad -\Gamma _1\Gamma ^*_0&\quad I_{\mathfrak{D }_{\Gamma ^*_1}}&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad \ldots \\ 0&\quad 0&\quad 0&\quad I_{\mathfrak{D }_{\Gamma ^*_1}}&\quad 0&\quad 0&\quad 0&\quad 0&\quad \ldots \\ 0&\quad 0&\quad 0&\quad 0&\quad I_{\mathfrak{D }_{\Gamma ^*_1}}&\quad 0&\quad 0&\quad 0&\quad \ldots \\ \vdots&\quad \vdots&\quad \vdots&\quad \vdots&\quad \vdots&\quad \vdots&\quad \vdots&\quad \vdots&\quad \vdots \end{bmatrix}. \end{aligned}$$

If \(N\ge 1\), then truncated CMV matrices \(\mathcal{T }_0\) and \(\widetilde{\mathcal{T }}_0\) take the form

$$\begin{aligned} \mathcal{T }_0={\small \left[ \begin{array}{c|c} {\mathcal{S }_{N-1}}&{}\begin{array}{cccc} 0&{}0&{}0&{}\ldots \\ \vdots &{}\vdots &{}\vdots &{}\vdots \\ 0&{}0&{}0&{}\ldots \\ D_{\Gamma ^*_{2N+1}}\Gamma _{2N+1}&{}D_{\Gamma ^*_{2N}}&{}0&{}\ldots \end{array}\\ \hline {\tiny \begin{array}{cccccc} 0&{}\ldots &{}0&{}D_{\Gamma _{2N}}D_{\Gamma _{2N-1}}&{}-D_{\Gamma _{2N}} \Gamma ^*_{2N-1}\\ 0&{}\ldots &{}0&{}0&{}0\\ \vdots &{}\vdots &{}\vdots &{}\vdots &{}\vdots \end{array}}&{} {\tiny \begin{array}{cccccc} -\Gamma ^*_{2N}\Gamma _{2N+1}&{}-\Gamma ^*_{2N}&{}0&{}0&{}\ldots \\ 0&{}0&{}I_{\mathfrak{D }_{\Gamma ^*_{2N+1}}}&{}0&{}\ldots \\ 0&{}0&{}0&{}I_{\mathfrak{D }_{\Gamma ^*_{2N+1}}}&{}\ldots \\ \vdots &{}\vdots &{}\vdots &{}\vdots &{}\vdots \end{array}} \end{array} \right] },\\ \widetilde{\mathcal{T }}_0=\left[ \begin{array}{c|c} {\widetilde{\mathcal{S }}_{N-1}}&{}{\begin{array}{cccc} 0&{}0&{}\ldots \\ \vdots &{}\vdots &{}\vdots \\ 0&{}0&{}\ldots \\ D_{\Gamma ^*_{2N-1}}D_{\Gamma ^*_{2N}}&{}0&{}\ldots \\ -{\Gamma ^*_{2N-1}}D_{\Gamma ^*_{2N}}&{}0&{}\ldots \end{array}} \\ \hline \begin{array}{cccccc} 0&{}\ldots &{}0&{}\Gamma _{2N+1}D_{\Gamma _{2N}}\\ 0&{}\ldots &{}0&{}0\\ 0&{}\ldots &{}0&{}0\\ \vdots &{}\vdots &{}\vdots &{}\vdots \end{array}&{} {\small \begin{array}{cccccc} -\Gamma _{2N+1}\Gamma ^*_{2N}&{}I_{\mathfrak{D }_{\Gamma ^*_{2N+1}}}&{}0&{}0&{}0&{}\ldots \\ 0&{}0&{}I_{\mathfrak{D }_{\Gamma ^*_{2N+1}}}&{}0&{}0&{}\ldots \\ 0&{}0&{}0&{}I_{\mathfrak{D }_{\Gamma ^*_{2N+1}}}&{}0&{}\ldots \\ \vdots &{}\vdots &{}\vdots &{}\vdots &{}\vdots &{}\vdots \end{array}} \end{array} \right] . \end{aligned}$$

1.4 A.4 \(\Gamma _{2N+1}\) is Co-isometric

Then \(\Gamma _{n}=0, \mathfrak{D }_{\Gamma _{n}}=\mathfrak{D }_{\Gamma _{2N+1}}\),

\(D_{\Gamma _{n}}=I_{\mathfrak{D }_{\Gamma _{2N+1}}}\) for \(n> 2N+1\). Define

$$\begin{aligned} \mathfrak{H }_0&= \mathfrak{D }_{\Gamma _0}\bigoplus \mathfrak{D }_{\Gamma _1}\bigoplus \mathfrak{D }_{\Gamma _1} \bigoplus \cdots ,\; {\mathrm{if}}\quad N=0,\\ \mathfrak{H }_0&= \left( \bigoplus \limits _{n=0}^{N-1}\begin{array}{l} \mathfrak{D }_{\Gamma _{2n}}\\ \oplus \\ \mathfrak{D }_{\Gamma ^*_{2n+1}}\end{array}\right) \bigoplus \mathfrak{D }_{\Gamma _{2N}}\bigoplus \mathfrak{D }_{\Gamma _{2N+1}}\bigoplus \cdots \bigoplus \mathfrak{D }_{\Gamma _{2N+1}}\bigoplus \cdots \;{\mathrm{if}}\; N\ge 1,\\ \widetilde{\mathfrak{H }}_0&= \mathfrak{D }_{\Gamma ^*_0}\bigoplus \mathfrak{D }_{\Gamma _1}\bigoplus \mathfrak{D }_{\Gamma _1}\bigoplus \cdots ,\; {\mathrm{if}}\quad N=0, \\ \widetilde{\mathfrak{H }}_0&= \left( \bigoplus \limits _{n=0}^{N}\begin{array}{l}\mathfrak{D }_{\Gamma ^*_{2n}}\\ \oplus \\ \mathfrak{D }_{\Gamma _{2n+1}}\end{array}\right) \bigoplus \mathfrak{D }_{\Gamma _{2N+1}}\bigoplus \mathfrak{D }_{\Gamma _{2N+1}}\bigoplus \cdots \bigoplus \mathfrak{D }_{\Gamma _{2N+1}}\bigoplus \cdots \;{\mathrm{if}}\; N\ge 1. \end{aligned}$$

Define operators

$$\begin{aligned} \mathcal{L }_0&= {\left\{ \begin{array}{ll}\mathbf{J}_{D_{\Gamma _0}}\bigoplus I_{\mathfrak{D }_{\Gamma _1}}\bigoplus I_{\mathfrak{D }_{\Gamma _1}}\bigoplus \cdots \;{\mathrm{if}}\quad N=0,\\ \mathbf{J}_{\Gamma _0}\bigoplus \left( \bigoplus \limits _{n=1}^{N}\mathbf{J}_{\Gamma _{2n}}\right) \bigoplus I_{\mathfrak{D }_{\Gamma _{2N+1}}}\bigoplus I_{\mathfrak{D }_{\Gamma _{2N+1}}}\bigoplus \cdots \;{\mathrm{if}}\quad N\ge 1, \end{array}\right. }\\ \mathcal{M }_0&= {\left\{ \begin{array}{ll}I_\mathfrak{M }\bigoplus \mathbf{J}^{(c)}_{\Gamma _1}\bigoplus I_{\mathfrak{D }_{\Gamma _1}}\bigoplus I_{\mathfrak{D }_{\Gamma _1}}\bigoplus \cdots \; {\mathrm{if}}\quad N=0, \\ I_\mathfrak{M }\bigoplus \left( \bigoplus \limits _{n=1}^{N}\mathbf{J}_{\Gamma _{2n-1}}\right) \bigoplus \mathbf{J}^{(c)}_{\Gamma _{2N+1}} \bigoplus I_{\mathfrak{D }_{\Gamma _{2N+1}}} \bigoplus \cdots \;{\mathrm{if}}\quad N\ge 1, \end{array}\right. }\\ \widetilde{\mathcal{M }}_0&= {\left\{ \begin{array}{ll}I_\mathfrak{N }\bigoplus \mathbf{J}^{(c)}_{\Gamma _1}\bigoplus I_{\mathfrak{D }_{\Gamma _1}}\bigoplus I_{\mathfrak{D }_{\Gamma _1}}\bigoplus \cdots \; {\mathrm{if}}\quad N=0, \\ I_\mathfrak{N }\bigoplus \left( \bigoplus \limits _{n=1}^{N}\mathbf{J}_{\Gamma _{2n-1}}\right) \bigoplus \mathbf{J}^{(c)}_{\Gamma _{2N+1}} \bigoplus I_{\mathfrak{D }_{\Gamma _{2N+1}}}\bigoplus \cdots \;{\mathrm{if}}\quad N\ge 1. \end{array}\right. } \end{aligned}$$

Define \(\mathcal{U }_0=\mathcal{L }_0\mathcal{M }_0\) and \(\widetilde{\mathcal{U }}_0=\widetilde{\mathcal{M }}_0\mathcal{L }_0\).

If \(\Gamma _1\) is co-isometric, then

$$\begin{aligned} \mathcal{U }_0=\begin{bmatrix} \Gamma _0&D_{\Gamma ^*_0}\Gamma _1&0&0&0&\ldots \\D_{\Gamma _0}&-\Gamma ^*_0\Gamma _1&0&0&0&\ldots \\0&{D_{\Gamma _1}}&0&0&0&\ldots \\0&0&I_{\mathfrak{D }_{\Gamma _1}}&0&0&\ldots \\0&0&0&I_{\mathfrak{D }_{\Gamma _1}}&0&\ldots \\\vdots&\vdots&\vdots&\vdots&\vdots&\vdots \end{bmatrix},\quad \widetilde{\mathcal{U }}_0=\begin{bmatrix} \Gamma _0&D_{\Gamma ^*_0}&0&0&0&\ldots \\\Gamma _1D_{\Gamma _0}&-\Gamma _1\Gamma ^*_0&0&0&0&\ldots \\D_{\Gamma _1}D_{\Gamma _0}&-{D_{\Gamma _1}}\Gamma ^*_0&0&0&0&\ldots \\0&0&I_{\mathfrak{D }_{\Gamma _1}}&0&0&\ldots \\0&0&0&I_{\mathfrak{D }_{\Gamma _1}}&0&\ldots \\\vdots&\vdots&\vdots&\vdots&\vdots&\vdots \end{bmatrix}. \end{aligned}$$

If \(N\ge 1\), then truncated CMV matrices \(\mathcal{T }_0\) and \(\widetilde{\mathcal{T }}_0\) in this case take the form

$$\begin{aligned} \mathcal{T }_0&= \left[ \begin{array}{c|c} {\mathcal{S }_{N-1}}&{}\begin{array}{cccccc} 0&{}0&{}\ldots \\ \vdots &{}\vdots &{}\vdots \\ 0&{}0&{}\ldots \\ D_{\Gamma ^*_{2N}}\Gamma _{2N+1}&{}0&{}\ldots \end{array} \\ \hline \begin{array}{ccccc} 0&{}\ldots &{}0&{}D_{\Gamma _{2N}}D_{\Gamma _{2N-1}}&{}-D_{\Gamma _{2N}}\Gamma ^*_{2N-1}\\ 0&{}\ldots &{}0&{}0&{}0\\ \vdots &{}\vdots &{}\vdots &{}\vdots &{}\vdots \end{array}&{} \begin{array}{cccccc} -\Gamma ^*_{2N}\Gamma _{2N+1}&{}0&{}0&{}\ldots \\ D_{\Gamma _{2N+1}}&{}0&{}0&{}\ldots \\ 0&{}I_{\mathfrak{D }_{\Gamma ^*_{2N+1}}}&{}0&{}\ldots \\ \vdots &{}\vdots &{}\vdots &{}\vdots &{}\vdots \end{array} \end{array} \right] ,\\ \widetilde{\mathcal{T }}_0&= \left[ \begin{array}{c|c} {\widetilde{\mathcal{S }}_{N-1}}&{}\begin{array}{cccccc} 0&{}0&{}\ldots \\ \vdots &{}\vdots &{}\vdots \\ 0&{}0&{}\ldots \\ D_{\Gamma ^*_{2N-1}}D_{\Gamma ^*_{2N}}&{}0&{}\ldots \\ -{\Gamma ^*_{2N-1}}D_{\Gamma ^*_{2N}}&{}0&{}\ldots \end{array} \\ \hline {\begin{array}{ccccc} 0&{}\ldots &{}0&{}\Gamma _{2N+1}D_{\Gamma _{2N}}\\ 0&{}\ldots &{}0&{}D_{\Gamma _{2N+1}}D_{\Gamma _{2N}}\\ 0&{}\ldots &{}0&{}0\\ \vdots &{}\vdots &{}\vdots &{}\vdots \end{array}}&{} {\begin{array}{cccccc} -\Gamma _{2N+1}\Gamma ^*_{2N}&{}0&{}0&{}\ldots \\ -D_{\Gamma _{2N+1}}\Gamma ^*_{2N}&{}0&{}0&{}\ldots \\ 0&{}I_{\mathfrak{D }_{\Gamma ^*_{2N+1}}}&{}0&{}0&{}\ldots \\ 0&{}0&{}I_{\mathfrak{D }_{\Gamma ^*_{2N+1}}}&{}0&{}\ldots \\ \vdots &{}\vdots &{}\vdots &{}\vdots &{}\vdots \end{array}} \end{array} \right] . \end{aligned}$$

1.5 A.5 \(\Gamma _{2N}\) is Unitary

In this case

$$\begin{aligned} \mathfrak{H }_0&= \bigoplus \limits _{n=0}^{N-1}\begin{array}{l} \mathfrak{D }_{\Gamma _{2n}}\\ \oplus \\ \mathfrak{D }_{\Gamma ^*_{2n+1}} \end{array},\; \widetilde{\mathfrak{H }}_0= \bigoplus \limits _{n=0}^{N-1}\begin{array}{l} \mathfrak{D }_{\Gamma ^*_{2n}}\\ \oplus \\ \mathfrak{D }_{\Gamma _{2n+1}}\end{array},\\ \mathcal{U }_0&= \left( \mathbf{J }_{\Gamma _0}\oplus \mathbf{J }_{\Gamma _2}\oplus \cdots \oplus \mathbf{J }_{\Gamma _{2(N-1)}}\oplus \Gamma _{2N}\right) \times \left( I_{\mathfrak{M }}\oplus \mathbf{J }_{\Gamma _1}\oplus \cdots \oplus \mathbf{J }_{\Gamma _{2N-1}}\right) , \end{aligned}$$

If \(N=1\) (\(\Gamma _2\) is unitary), then

$$\begin{aligned} \mathcal{U }_0=\begin{bmatrix}\Gamma _0&\quad D_{\Gamma ^*_0}\Gamma _1&\quad D_{\Gamma ^*_0}D_{\Gamma ^*_1}\\ D_{\Gamma _0}&\quad -\Gamma ^*_0\Gamma _1&\quad -\Gamma ^*_0D_{\Gamma ^*_1}\\ 0&\quad \Gamma _2 D_{\Gamma _1}&\quad -\Gamma _2\Gamma ^*_1 \end{bmatrix},\;\widetilde{\mathcal{U }}_0=\begin{bmatrix}\Gamma _0&\quad D_{\Gamma ^*_0}&\quad 0&\\ \Gamma _1D_{\Gamma _0}&\quad -\Gamma _1\Gamma ^*_0&\quad D_{\Gamma ^*_1}\Gamma _2\\ D_{\Gamma _1}D_{\Gamma _0}&\quad -D_{\Gamma _1}\Gamma ^*_0&\quad -\Gamma ^*_1\Gamma _2 \end{bmatrix} \end{aligned}$$

If \(N\ge 1\), then

$$\begin{aligned} \mathcal{T }_0= \mathcal{S }_{N-1},\; \widetilde{\mathcal{T }}_0= \widetilde{\mathcal{S }}_{N-1}. \end{aligned}$$

1.6 A.6 \(\Gamma _{2N+1}\) is Unitary

Then

$$\begin{aligned} \mathfrak{H }_0&= \mathfrak{D }_{\Gamma _0},\;\widetilde{\mathfrak{H }}_0=\mathfrak{D }_{\Gamma ^*_0}\;{\mathrm{if}}\quad N=0,\\ \mathfrak{H }_0&= \bigoplus \limits _{n=0}^{N-1}\begin{array}{l}\mathfrak{D }_{\Gamma _{2n}}\\ \oplus \\ \mathfrak{D }_{\Gamma ^*_{2n+1}}\end{array}\bigoplus \mathfrak{D }_{\Gamma _{2N}},\; \widetilde{\mathfrak{H }}_0= \bigoplus \limits _{n=0}^{N-1}\begin{array}{l}\mathfrak{D }_{\Gamma ^*_{2n}}\\ \oplus \\ \mathfrak{D }_{\Gamma _{2n+1}}\end{array}\bigoplus \mathfrak{D }_{\Gamma ^*_{2N}}\;{\mathrm{if}}\; N\ge 1,\\ \mathcal{U }_0&= \left( \mathbf{J }_{\Gamma _0}\oplus \mathbf{J }_{\Gamma _2}\oplus \cdots \oplus \mathbf{J }_{\Gamma _{2N}}\right) \times \left( I_{\mathfrak{M }}\oplus \mathbf{J }_{\Gamma _1}\oplus \cdots \oplus \mathbf{J }_{\Gamma _{2N-1}}\oplus \Gamma _{2N+1}\right) ,\\ \widetilde{\mathcal{U }}_0&= \left( I_{\mathfrak{N }}\oplus \mathbf{J }_{\Gamma _1}\oplus \cdots \oplus \mathbf{J }_{\Gamma _{2N-1}}\oplus \Gamma _{2N+1}\right) \times \left( \mathbf{J }_{\Gamma _0}\oplus \mathbf{J }_{\Gamma _2}\oplus \cdots \oplus \mathbf{J }_{\Gamma _{2N}}\right) , \quad N\ge 1.\\ \mathcal{U }_0&= \begin{bmatrix}\Gamma _0&D_{\Gamma ^*_0}\\D_{\Gamma _0}&-\Gamma ^*_0\end{bmatrix}\begin{bmatrix}I_\mathfrak{M }&0\\0&\Gamma _1 \end{bmatrix}=\begin{bmatrix}\Gamma _0&D_{\Gamma ^*_0}\Gamma _1\\D_{\Gamma _0}&-\Gamma ^*_0\Gamma _1 \end{bmatrix},\\ \widetilde{\mathcal{U }}_0&= \begin{bmatrix}I_\mathfrak{N }&0\\0&\Gamma _1 \end{bmatrix}\begin{bmatrix}\Gamma _0&D_{\Gamma ^*_0}\\D_{\Gamma _0}&-\Gamma ^*_0\end{bmatrix}=\begin{bmatrix}\Gamma _0&D_{\Gamma ^*_0}\\\Gamma _1D_{\Gamma _0}&-\Gamma _1\Gamma ^*_0 \end{bmatrix},\;{\mathrm{if}}\quad N=0, \end{aligned}$$

In this case if \(N\ge 1\), then

$$\begin{aligned} \mathcal{T }_0&= \left[ \begin{array}{c|c} \mathcal{S }_{N-1} &{} \begin{array}{cc} 0\\ 0\\ \vdots \\ 0\\ D_{\Gamma ^*_{2N}}\Gamma _{2N+1} \end{array}\\ \hline \begin{array}{ccccc} 0&{}\ldots &{}0&{}D_{\Gamma _{2N}}D_{\Gamma _{2N-1}}&{}-D_{\Gamma _{2N}}{\Gamma ^*_{2N-1}} \end{array}&\begin{array}{cc} -\Gamma ^*_{2N}\Gamma ^*_{2N+1} \end{array} \end{array} \right] ,\\ \widetilde{\mathcal{T }}_0&= \left[ \begin{array}{c|c} \widetilde{\mathcal{S }}_{N-1} &{} \begin{array}{cc} 0\\ 0\\ \vdots \\ 0\\ D_{\Gamma ^*_{2N-1}}D_{\Gamma ^*_{2N}}\\ -\Gamma _{2N-1}D_{\Gamma ^*_{2N}} \end{array}\\ \hline \begin{array}{ccccc} 0&{}\ldots &{}0&{}{\Gamma _{2N+1}}D_{\Gamma _{2N}} \end{array}&\begin{array}{cc} -\Gamma _{2N+1}\Gamma ^*_{2N} \end{array} \end{array} \right] . \end{aligned}$$

In particular if \(N=1\) (\(\Gamma _3\) is unitary), then

$$\begin{aligned} \mathcal{U }_0=\begin{bmatrix}\Gamma _0&D_{\Gamma ^*_0}\Gamma _1&D_{\Gamma ^*_0}D_{\Gamma ^*_1}&0\\ D_{\Gamma _0}&-\Gamma ^*_0\Gamma _1&-\Gamma ^*_0D_{\Gamma ^*_1}&0\\ 0&\Gamma _2 D_{\Gamma _1}&-\Gamma _2\Gamma ^*_1&D_{\Gamma ^*_2}\Gamma _3\\ 0&D_{\Gamma _2}D_{\Gamma _1}&-D_{\Gamma _2}\Gamma ^*_1&-\Gamma ^*_2\Gamma _3 \end{bmatrix},\;\widetilde{\mathcal{U }}_0=\begin{bmatrix}\Gamma _0&D_{\Gamma ^*_0}&0&0&\\ \Gamma _1D_{\Gamma _0}&-\Gamma _1\Gamma ^*_0&D_{\Gamma ^*_1}\Gamma _2&D_{\Gamma ^*_1}D_{\Gamma ^*_2}\\ D_{\Gamma _1}D_{\Gamma _0}&-D_{\Gamma _1}\Gamma ^*_0&-\Gamma ^*_1\Gamma _2&-\Gamma ^*_1D_{\Gamma ^*_2}\\ 0&0&\Gamma _3 D_{\Gamma _2}&-\Gamma _3\Gamma ^*_2 \end{bmatrix}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arlinskiĭ, Y. The Schur Problem and Block Operator CMV Matrices. Complex Anal. Oper. Theory 8, 875–923 (2014). https://doi.org/10.1007/s11785-013-0317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-013-0317-3

Keywords

Mathematics Subject Classification (2010)

Navigation