Skip to main content
Log in

Elementary abelian \(\varvec{p}\)-groups are the only finite groups with the Borsuk–Ulam property

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

It is well known that the Borsuk–Ulam theorem holds for elementary abelian p-groups \(C_p{}^k\). When the Borsuk–Ulam theorem holds for a finite group G, we say that G has the Borsuk–Ulam property or G is a BU-group. In this paper, we show that a non-abelian p-group of exponent p is not a BU-group, which leads to a complete classification of finite BU-groups, namely finite BU-groups are only elementary abelian p-groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bartsch, T.: On the existence of Borsuk–Ulam theorems. Topology 31, 533–543 (1992)

    Article  MathSciNet  Google Scholar 

  2. Błaszczyk, Z., Marzantowicz, W., Singh, M.: Equivariant maps between representation spheres. Bull. Belg. Math. Soc. Simon Stevin 24, 621–630 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Biasi, C., de Mattos, D.: A Borsuk-Ulam Theorem for compact Lie group actions. Bull. Braz. Math. Soc. 37, 127–137 (2006)

    Article  MathSciNet  Google Scholar 

  4. Dold, A.: Simple proofs of some Borsuk–Ulam results. In: Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), Contemp. Math., vol. 19, pp. 65–69 (1983)

  5. Fadell, E., Husseini, S.: An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems. Ergod. Theory Dyn. Syst. 8, 73–85 (1988)

    Article  MathSciNet  Google Scholar 

  6. Gorenstein, D.: Finite Groups, 2nd edn. AMS Chelsea, Providence (2007)

    MATH  Google Scholar 

  7. Husemoller, D.: Fiber Bundles, Graduate Texts in Mathematics, vol. 20. Springer, Berlin (1993)

  8. Kobayashi, T.: The Borsuk–Ulam theorem for a \({\mathbb{Z}}_q\)-map from a \({\mathbb{Z}}_q\)-space to \(S^{2n+1}\). Proc. Am. Math. Soc. 97, 714–716 (1986)

    Google Scholar 

  9. Komiya, K.: Equivariant \(K\)-theoretic Euler classes and maps of representation spheres. Osaka J. Math. 38, 239–249 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Leary, I.J.: The mod-\(p\) cohomology rings of some \(p\)-groups. Math. Proc. Camb. Philos. Soc. 112, 63–75 (1992)

    Article  MathSciNet  Google Scholar 

  11. Lewis, G.: The integral cohomology rings of groups of order \(p^3\). Trans. Am. Math. Soc. 132, 501–529 (1968)

    MATH  Google Scholar 

  12. Marzantowicz, W.: An almost classification of compact Lie groups with Borsuk–Ulam properties. Pac. J. Math. 144, 299–311 (1990)

    Article  MathSciNet  Google Scholar 

  13. Marzantowicz, W.: Borsuk-Ulam theorem for any compact Lie group. J. Lond. Math. Soc. II. Ser. 49, 195–208 (1994)

    Article  MathSciNet  Google Scholar 

  14. Marzantowicz, W., de Mattos, D., dos Santos, E.L.: Bourgin–Yang versions of the Borsuk–Ulam theorem for \(p\)-toral groups. J. Fixed Point Theory Appl. 19, 1427–1437 (2017)

    Article  MathSciNet  Google Scholar 

  15. Matoušek, J.: Using the Borsuk–Ulam Theorem. Springer, Berlin (2003)

    MATH  Google Scholar 

  16. Nagasaki, I., Kawakami, T., Hara, Y., Ushitaki, F.: The Smith homology and Borsuk–Ulam type theorems. Far East J. Math. Sci. 38, 205–216 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Serre, J.P.: Linear Representations of Finite Groups. Graduate Texts in Mathematics, vol. 42. Springer, Berlin (1977)

    Book  Google Scholar 

  18. Steinlein, H.: Borsuk’s Antipodal Theorem and Its Generalizations and Applications: A Survey, Topological Methods in Nonlinear Analysis, pp. 166–235, Montreal (1985)

  19. Steinlein, H.: Spheres and symmetry: Borsuk’s antipodal theorem. Topol. Methods Nonlinear Anal. 1, 15–33 (1993)

    Article  MathSciNet  Google Scholar 

  20. tom Dieck, T.: Transformation Groups and Representation Theory, Lecture Note in Mathematics, vol. 766. Springer, Berlin (1979)

  21. tom Dieck, T.: Transformation Groups. Walter de Gruyter, Berlin (1987)

    Book  Google Scholar 

  22. Waner, S.: A note on the existence of \(G\)-maps between spheres. Proc. Am. Math. Soc. 99, 179–181 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for carefully reading the manuscript and for giving valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikumitsu Nagasaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagasaki, I. Elementary abelian \(\varvec{p}\)-groups are the only finite groups with the Borsuk–Ulam property. J. Fixed Point Theory Appl. 21, 16 (2019). https://doi.org/10.1007/s11784-018-0654-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-018-0654-y

Keywords

Mathematics Subject Classification

Navigation