Skip to main content
Log in

Significant enhancement in catalytic ozonation efficacy: From granular to super-fine powdered activated carbon

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

In this study, super-fine powdered activated carbon (SPAC) has been proposed and investigated as a novel catalyst for the catalytic ozonation of oxalate for the first time. SPAC was prepared from commercial granular activated carbon (GAC) by ball milling. SPAC exhibited high external surface area with a far greater member of meso- and macropores (563% increase in volume). The catalytic performances of activated carbons (ACs) of 8 sizes were compared and the rate constant for pseudo first-order total organic carbon removal increased from 0.012 min–1 to 0.568 min–1 (47-fold increase) with the decrease in size of AC from 20 to 40 mesh (863 mm) to SPAC (~1.0 mm). Furthermore, the diffusion resistance of SPAC decreased 17-fold compared with GAC. The ratio of oxalate degradation by surface reaction increased by 57%. The rate of transformation of ozone to radicals by SPAC was 330 times that of GAC. The results suggest that a series of changes stimulated by ball milling, including a larger ratio of external surface area, less diffusion resistance, significant surface reaction and potential oxidized surface all contributed to enhancing catalytic ozonation performance. This study demonstrated that SPAC is a simple and effective catalyst for enhancing catalytic ozonation efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Khamparia S, Jaspal D K. Adsorption in combination with ozonation for the treatment of textile waste water: A critical review. Frontiers of Environmental Science & Engineering, 2017, 11(1): 8

    Article  Google Scholar 

  2. Oller I, Malato S, Sánchez-Pérez J A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination—A review. Science of the Total Environment, 2011, 409(20): 4141–4166

    Article  CAS  Google Scholar 

  3. Matilainen A, Sillanpää M. Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere, 2010, 80(4): 351–365

    Article  CAS  Google Scholar 

  4. Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and applications. 2nd ed.New York: JohnWiley and Sons Inc., 2001

    Google Scholar 

  5. Faria P C C, Órfão J J M, Pereira M F R. Activated carbon catalytic ozonation of oxamic and oxalic acids. Applied Catalysis B: Environmental, 2008, 79(3): 237–243

    Article  CAS  Google Scholar 

  6. Staehelin J, Hoigne J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environmental Science & Technology, 1985, 19(12): 1206–1213

    Article  CAS  Google Scholar 

  7. Alvárez P, García-Araya J, Beltrán F, Giráldez I, Jaramillo J, Gµmez-Serrano V. The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach. Carbon, 2006, 44(14): 3102–3112

    Article  Google Scholar 

  8. Legube B, Leitner N K V. Catalytic ozonation: A promising advanced oxidation technology for water treatment. Catalysis Today, 1999, 53(1): 61–72

    Article  CAS  Google Scholar 

  9. Ma J, Graham N J D. Degradation of atrazine by manganesecatalysed ozonation: Influence of humic substances. Water Research, 1999, 33(3): 785–793

    Article  CAS  Google Scholar 

  10. Pines D S, Reckhow D A. Effect of dissolved cobalt(II) on the ozonation of oxalic acid. Environmental Science & Technology, 2002, 36(19): 4046–4051

    Article  CAS  Google Scholar 

  11. Beltrán F J, Rivas F J, Montero-de-Espinosa R. Iron type catalysts for the ozonation of oxalic acid in water. Water Research, 2005, 39 (15): 3553–3564

    Article  Google Scholar 

  12. Andreozzi R, Caprio V, Insola A, Marotta R, Tufano V. The ozonation of pyruvic acid in aqueous solutions catalyzed by suspended and dissolved manganese. Water Research, 1998, 32 (5): 1492–1496

    Article  CAS  Google Scholar 

  13. Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation. Applied Catalysis B: Environmental, 2010, 99(1–2): 27–42

    Article  CAS  Google Scholar 

  14. Fan X, Restivo J, Órfão J J M, Pereira M F R, Lapkin A A. The role of multiwalled carbon nanotubes (MWCNTs) in the catalytic ozonation of atrazine. Chemical Engineering Journal, 2014, 241): 66–76

    Article  CAS  Google Scholar 

  15. Oulton R, Haase J P, Kaalberg S, Redmond C T, Nalbandian M J, Cwiertny D M. Hydroxyl radical formation during ozonation of multiwalled carbon nanotubes: performance optimization and demonstration of a reactive CNT filter. Environmental Science & Technology, 2015, 49(6): 3687–3697

    Article  CAS  Google Scholar 

  16. Rocha R P, Gonçalves A G, Pastrana-Martínez L M, Bordoni B C, Soares O S G P, Órfão J J M, Faria J L, Figueiredo J L, Silva AMT, Pereira M F R. Nitrogen-doped graphene-based materials for advanced oxidation processes. Catalysis Today, 2015, 249): 192–198

    Article  CAS  Google Scholar 

  17. Restivo J, Garcia-Bordejé E, Órfão J J M, Pereira M F R. Carbon nanofibers doped with nitrogen for the continuous catalytic ozonation of organic pollutants. Chemical Engineering Journal, 2016, 293): 102–111

    Article  CAS  Google Scholar 

  18. Zhang T, Li C, Ma J, Tian H, Qiang Z. Surface hydroxyl groups of synthetic α-FeOOH in promoting $OH generation from aqueous ozone: Property and activity relationship. Applied Catalysis B: Environmental, 2008, 82(1–2): 131–137

    Article  CAS  Google Scholar 

  19. Zhang T, Li W, Croué J P. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation. Environmental Science & Technology, 2011, 45(21): 9339–9346

    Article  CAS  Google Scholar 

  20. Marsh H. Introduction to Carbon Technologies. Alicante: University of Alicante, 1997

    Google Scholar 

  21. Figueiredo J L, Pereira M F R. The role of surface chemistry in catalysis with carbons. Catalysis Today, 2010, 150(1–2): 2–7

    Article  CAS  Google Scholar 

  22. Figueiredo J L, Pereira M F R, Freitas M M A, Orfao J J M. Modification of the surface chemistry of activated carbons. Carbon, 1999, 37(9): 1379–1389

    Article  CAS  Google Scholar 

  23. Krzyzynska B, Malaika A, Rechnia P, Kozlowski M. Study on catalytic centres of activated carbons modified in oxidising or reducing conditions. Journal of Molecular Catalysis A Chemical, 2014, 395): 523–533

    Article  CAS  Google Scholar 

  24. Sánchez-Polo M, von Gunten U, Rivera-Utrilla J. Efficiency of activated carbon to transform ozone into *OH radicals: influence of operational parameters. Water Research, 2005, 39(14): 3189–3198

    Article  Google Scholar 

  25. Xing L, Xie Y, Cao H, Minakata D, Zhang Y, Crittenden J C. Activated carbon-enhanced ozonation of oxalate attributed to HO• oxidation in bulk solution and surface oxidation: Effects of the type and number of basic sites. Chemical Engineering Journal, 2014, 245): 71–79

    Article  CAS  Google Scholar 

  26. Cao H, Xing L, Wu G, Xie Y, Shi S, Zhang Y, Minakata D, Crittenden J C. Promoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acid. Applied Catalysis B: Environmental, 2014, 146): 169–176

    Article  CAS  Google Scholar 

  27. Jans U, Hoigne J. Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH-radicals. Ozone Science and Engineering, 1998, 20(1): 67–90

    Article  CAS  Google Scholar 

  28. Álvarez P M, Masa F J, Jaramillo J, Beltran F J, Gomezserrano V. Kinetics of ozone decomposition by granular activated carbon. Industrial & Engineering Chemistry Research, 2008, 47(8): 2545–2553

    Article  Google Scholar 

  29. Qiao N, Zhang X, He C, Li Y, Zhang Z, Cheng J, Hao Z. Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts. Frontiers of Environmental Science & Engineering, 2016, 10(3): 458–466 doi:10.1007/s11783-015-0802-1

    Article  CAS  Google Scholar 

  30. Bonvin F, Jost L, Randin L, Bonvin E, Kohn T. Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent. Water Research, 2016, 90): 90–99

    Article  CAS  Google Scholar 

  31. Partlan E, Davis K, Ren Y, Apul O G, Mefford O T, Karanfil T, Ladner D A. Effect of bead milling on chemical and physical characteristics of activated carbons pulverized to superfine sizes. Water Research, 2016, 89): 161–170

    Article  CAS  Google Scholar 

  32. Matsui Y, Ando N, Yoshida T, Kurotobi R, Matsushita T, Ohno K. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon. Water Research, 2011, 45(4): 1720–1728

    Article  CAS  Google Scholar 

  33. Ando N, Matsui Y, Kurotobi R, Nakano Y, Matsushita T, Ohno K. Comparison of natural organic matter adsorption capacities of superpowdered activated carbon and powdered activated carbon. Water Research, 2010, 44(14): 4127–4136

    Article  CAS  Google Scholar 

  34. Elovitz M S, von Gunten U. Hydroxyl radical/ozone ratios during ozonation processes. I. The RCT concept. Ozone Science and Engineering, 1999, 21(3): 239–260

    Article  CAS  Google Scholar 

  35. Rivera-Utrilla J, Sánchez-Polo M. Ozonation of 1,3,6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase. Applied Catalysis B: Environmental, 2002, 39(4): 319–329

    Article  CAS  Google Scholar 

  36. Nawrocki J, Fijolek L. Catalytic ozonation—Effect of carbon contaminants on the process of ozone decomposition. Applied Catalysis B: Environmental, 2013, 142–143: 307–314

    Article  Google Scholar 

  37. Boehm H P. Chemical Identification of Surface Groups. Advances in Catalysis, 1966, 16): 179–274

    CAS  Google Scholar 

  38. Dastgheib S A, Karanfil T, Cheng W. Tailoring activated carbons for enhanced removal of natural organic matter from natural waters. Carbon, 2004, 42(3): 547–557

    Article  CAS  Google Scholar 

  39. Valdés H, Sánchez-Polo M, Rivera-Utrilla J, Zaror C A. Effect of ozone treatment on surface properties of activated carbon. Langmuir, 2002, 18(6): 2111–2116

    Article  Google Scholar 

  40. Vecitis C D, Lesko T, Colussi A J, Hoffmann M R. Sonolytic decomposition of aqueous bioxalate in the presence of ozone. The Journal of Physical Chemistry A, 2010, 114(14): 4968–4980

    Article  CAS  Google Scholar 

  41. Hoigné J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water—II: Dissociating organic compounds. Water Research, 1983, 17(2): 185–194

    Article  Google Scholar 

  42. Sehested K, Getoff N, Schwoerer F, Markovic V M, Nielsen S O. Pulse radiolysis of oxalic acid and oxalates. Journal of Physical Chemistry, 1971, 75(6): 749–755

    Article  CAS  Google Scholar 

  43. Bader H, Hoigne J. Determination of ozone in water by the indigo method. Water Research, 1981, 15(4): 449–456

    Article  CAS  Google Scholar 

  44. American Water Works Association (AWWA) A P H A A. Standard Methods for the Examination of Water and Wastewater. 22nd Ed. Washington, DC: Water Environment Federation, 2012

  45. Zhao D, Cheng J, Vecitis C D, Hoffmann M R. Sorption of perfluorochemicals to granular activated carbon in the presence of ultrasound. The Journal of Physical Chemistry A, 2011, 115(11): 2250–2257

    Article  CAS  Google Scholar 

  46. Wang H, Yuan S, Zhan J,Wang Y, Yu G, Deng S, Huang J,Wang B. Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process. Water Research, 2015, 80): 20–29

    Article  CAS  Google Scholar 

  47. Xing L, Xie Y, Minakata D, Cao H, Xiao J, Zhang Y, Crittenden J C. Activated carbon enhanced ozonation of oxalate attributed to HO oxidation in bulk solution and surface oxidation: Effect of activated carbon dosage and pH. Journal of Environmental Sciences (China), 2014, 26(10): 2095–2105

    Article  Google Scholar 

  48. Fogler H S. Elements of Chemical Reaction Engineering, 3rd Ed. Upper Saddle River, NJ: Prentice Hall PTR, 1999

    Google Scholar 

  49. Beltrán F J, Rivas J, Álvarez P, Montero-de-Espinosa RM. Kinetics of heterogeneous catalytic ozone decomposition in water in an activated carbon. Ozone Science and Engineering, 2002, 24(4): 227–237

    Article  Google Scholar 

  50. Wang J, Cheng J, Wang C, Yang S, Zhu W. Catalytic ozonation of dimethyl phthalate with RuO2/Al2O3 catalysts prepared by microwave irradiation. Catalysis Communications, 2013, 41): 1–5

    Article  Google Scholar 

  51. Breitbach M, Bathen D. Influence of ultrasound on adsorption processes. Ultrasonics Sonochemistry, 2001, 8(3): 277–283

    Article  CAS  Google Scholar 

  52. Liu C, Sun Y, Wang D, Sun Z, Chen M, Zhou Z, Chen W. Performance and mechanism of low-frequency ultrasound to regenerate the biological activated carbon. Ultrasonics Sonochemistry, 2017, 34): 142–153

    Article  CAS  Google Scholar 

  53. Park J S, Choi H, Cho J. Kinetic decomposition of ozone and parachlorobenzoic acid (pCBA) during catalytic ozonation. Water Research, 2004, 38(9): 2285–2292

    Article  CAS  Google Scholar 

  54. von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation.Water Research, 2003, 37(7): 1443–1467

    Google Scholar 

  55. Alvárez P M, García-Araya J F, Beltrán F J, Giráldez I, Jaramillo J, Gµmez-Serrano V. The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach. Carbon, 2006, 44(14): 3102–3112

    Article  Google Scholar 

  56. Faria P C C, Órfão J J M, Pereira M F R. Ozone decomposition in water catalyzed by activated carbon: Influence of chemical and textural properties. Industrial & Engineering Chemistry Research, 2006, 45(8): 2715–2721

    Article  CAS  Google Scholar 

  57. Chen C, Huang W. Aggregation kinetics of nanosized activated carbons in aquatic environments. Chemical Engineering Journal, 2017, 313): 882–889

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program-China (No. 2016YFB0600502) and funding from the State Key Joint Laboratory of Environment Simulation and Pollution Control (No. 15Y02ESPCT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyuan Zhang or Xia Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Gu, W., Li, G. et al. Significant enhancement in catalytic ozonation efficacy: From granular to super-fine powdered activated carbon. Front. Environ. Sci. Eng. 12, 6 (2018). https://doi.org/10.1007/s11783-018-1022-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-018-1022-2

Keywords

Navigation