Skip to main content
Log in

Heterologous expression of LamA gene encoded endo-β-1,3-glucanase and CO2 fixation by bioengineered Synechococcus sp. PCC 7002

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The gene for the catalytic domain of thermostable endo-β-1,3-glucanase (laminarinase) LamA was cloned from Thermotoga maritima MSB8 and heterologously expressed in a bioengineered Synechococcus sp. PCC 7002. The mutant strain was cultured in a photobioreactor to assess biomass yield, recombinant laminarinase activity, and CO2 uptake. The maximum enzyme activity was observed at a pH of 8.0 and a temperature of 70°C. At a CO2 concentration of 5%, we obtained a maximum specific growth rate of 0.083 h–1, a biomass productivity of 0.42 g∙L–1∙d–1, a biomass concentration of 3.697 g∙L–1, and a specific enzyme activity of the mutant strain of 4.325 U∙mg–1 dry mass. All parameters decreased as CO2 concentration increased from 5% to 10% and further to 15% CO2, except enzyme activity, which increased from 5% to 10% CO2. However, the mutant culture still grew at 15% CO2 concentration, as reflected by the biomass productivity (0.26 g∙L–1∙d–1), biomass concentration (2.416 g∙L–1), and specific enzyme activity (3.247 U∙mg–1 dry mass).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Badger M R, Price G D, Long B M, Woodger F J. The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. Journal of Experimental Botany, 2005, 57(2): 249–265

    Article  Google Scholar 

  2. Rothschild L J, Mancinelli R L. Life in extreme environments. Nature, 2001, 409(6823): 1092–1101

    Article  CAS  Google Scholar 

  3. Rajhi H, Puyol D, Martínez M C, Díaz E E, Sanz L J. Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems. Frontiers of Environmental Science & Engineering, 2016, 10(3): 513–521

    Article  CAS  Google Scholar 

  4. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 2006, 101(2): 87–96

    Article  CAS  Google Scholar 

  5. Xu Y, Alvey R M, Byrne P O, Graham J E, Shen G, Bryant D A. Expression of genes in cyanobacteria: adaptation of endogenous plasmids as platforms for high-level gene expression in Synechococcus sp. PCC 7002. Methods in Molecular Biology (Clifton, N.J.), 2011, 684: 273–293

    CAS  Google Scholar 

  6. Thiel T. Genetic analysis of cyanobacteria. In: Bryant D A, ed. The Molecular Biology of Cyanobacteria. 5th ed. Dordrecht, Netherlands: Kluwer Academic Publishers, 1994, 581–611

    Chapter  Google Scholar 

  7. Golden S S, Brusslan J, Haselkorn R. Genetic engineering of the cyanobacterial chromosome. Methods in Enzymology, 1987, 153(1): 215–231

    Article  CAS  Google Scholar 

  8. Pires J C M, Alvim-Ferraz M C M, Martins F G, Simões M. Wastewater treatment to enhance the economic viability of microalgae culture. Environmental Science and Pollution Research International, 2013, 20(8): 5096–5105

    Article  CAS  Google Scholar 

  9. Romera E, González F, Ballester A, Blázquez M L, Muñoz J Á. Biosorption of Cd, Ni, and Zn with mixtures of different types of algae. Environmental Engineering Science, 2008, 25(7): 999–1008

    Article  CAS  Google Scholar 

  10. Pang J, Matsuda M, Kuroda M, Inoue D, Sei K, Nishida K, Ike M. Characterization of the genes involved in nitrogen cycling in wastewater treatment plants using DNA microarray and most probable number-PCR. Frontiers of Environmental Science & Engineering, 2016, 10(4): 07

    Article  Google Scholar 

  11. Jacob-Lopes E, Gimenes Scoparo C H, Queiroz M I, Franco T T. Biotransformations of carbon dioxide in photobioreactors. Energy Conversion and Management, 2010, 51(5): 894–900

    Article  CAS  Google Scholar 

  12. de Castro Araújo S, Garcia V M T. Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture (Amsterdam, Netherlands), 2005, 246(1–4): 405–412

    Article  Google Scholar 

  13. de Morais M G, Costa J A. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 2007, 129(3): 439–445

    Google Scholar 

  14. Gonçalves A L, Rodrigues C M, Pires J C M, Simões M. The effect of increasing CO2 concentrations on its capture, biomass production and wastewater bioremediation by microalgae and cyanobacteria. Algal Research, 2016, 14: 127–136

    Article  Google Scholar 

  15. Sung K D, Lee J S, Shin C S, Park S C, Choi M J. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresource Technology, 1999, 68(3): 269–273

    Article  CAS  Google Scholar 

  16. Yue L, Chen W. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Conversion and Management, 2005, 46(11–12): 1868–1876

    Article  CAS  Google Scholar 

  17. Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 1993, 293(3): 781–788

    Article  CAS  Google Scholar 

  18. Ryan E M, Ward O P. Study of the effect of ß-1,3-glucanase from Basidiomycete QM 806 on yeast extract production. Biotechnology Letters, 1985, 7(6): 409–412

    Article  CAS  Google Scholar 

  19. Kim K H, Kim Y W, Kim H B, Lee B J, Lee D S. Anti-apoptotic activity of laminarin polysaccharides and their enzymatically hydrolyzed oligosaccharides from Laminaria japonica. Biotechnology Letters, 2006, 28(6): 439–446

    Article  CAS  Google Scholar 

  20. Woo C B, Kang H N, Lee S B. Molecular cloning and anti-fungal effect of endo-ß-1,3-glucanase from Thermotoga maritima. Food Science and Biotechnology, 2014, 23(4): 1243–1246

    Article  CAS  Google Scholar 

  21. Gueguen Y, Voorhorst W G B, van der Oost J, de Vos W M. Molecular and biochemical characterization of an endo-ß-1,3-glucanase of the hyperthermophilic Archaeon Pyrococcus furiosus. Journal of Biological Chemistry, 1997, 272(50): 31258–31264

    Article  CAS  Google Scholar 

  22. Liu W C, Lin Y S, Jeng W Y, Chen J H, Wang H J, Shyur L F. Engineering of dual-functional hybrid glucanases. Protein Engineering, Design & Selection, 2012, 25(11): 771–780

    Article  CAS  Google Scholar 

  23. Zverlov V V, Volkov Y, Velikodvorskaya T V, Schwarz W H. Highly thermostable endo-1,3-ß-glucanase (laminarinase) LamA from Thermotoga neapolitana: nucleotide sequence of the gene and characterization of the recombinant gene product. Microbiology, 1997, 143(5): 1701–1708

    Article  CAS  Google Scholar 

  24. Frigaard N U, Sakuragi Y, Bryant D A. Gene inactivation in the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium Chlorobium tepidum using in vitro-made DNA constructs and natural transformation. Methods in Molecular Biology (Clifton, N.J.), 2004, 274(24): 325–340

    CAS  Google Scholar 

  25. Minteer S D. Enzyme Stabilization and Immobilization: Methods and Protocols. New York: Humana, 2011

    Book  Google Scholar 

  26. Stevens S E, Patterson C O P, Myers J. The production of hydrogen peroxide by blue-green algae: a survey. Journal of Phycology, 1973, 9(4): 427–430

    CAS  Google Scholar 

  27. Nelson K E, Clayton R A, Gill S R, Gwinn ML, Dodson R J, Haft D H, Hickey E K, Peterson J D, Nelson W C, Ketchum K A, McDonald L, Utterback T R, Malek J A, Linher K D, Garrett M M, Stewart A M, Cotton M D, Pratt M S, Phillips C A, Richardson D, Heidelberg J, Sutton G G, Fleischmann R D, Eisen J A, White O, Salzberg S L, Smith H O, Venter J C, Fraser C M. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature, 1999, 99(6734): 323–339

    Google Scholar 

  28. Duan R, Lu Y, Hou L, Du L, Sun L, Tang X. U-shaped microRNA expression pattern could be a new concept biomarker for environmental estrogen. Frontiers of Environmental Science & Engineering, 2016, 10(6): 11

    Article  Google Scholar 

  29. Baladrón V, Ufano S, Dueñas E, Martín-Cuadrado A B, del Rey F, Vázquez de Aldana C R. Eng1p, an endo-1,3-ß-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. Eukaryotic Cell, 2002, 1(5): 774–786

    Article  Google Scholar 

  30. Wood T M, Bhat K M. Methods for measuring cellulose activities. Methods in Enzymology, 1988, 160(1): 87–112

    Article  CAS  Google Scholar 

  31. Yun Y S, Lee S B, Park J M, Lee C L, Yang J W. Carbon dioxide fixation by algal cultivation using wastewater nutrients. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1997, 69(4): 451–455

    Article  CAS  Google Scholar 

  32. Planas A. Bacterial 1,3–1,4-ß-glucanases: structure, function and protein engineering. Methods in Enzymology, 2000, 1543(2): 361–382

    CAS  Google Scholar 

  33. Sun L, Gurnon J R, Adams B J, Graves M V, Van Etten J L. Characterization of a ß-1,3-glucanase encoded by chlorella virus PBCV-1. Virology, 2000, 276(1): 27–36

    Article  CAS  Google Scholar 

  34. Spilliaert R, Hreggvidßson G O, Kristjansson J K, Eggertsson G, Palsdottir A. Cloning and sequencing of a Rhodothermus marinus gene, bglA, coding for a thermostable ß-glucanase and its expression in Escherichia coli. European Journal of Biochemistry, 1994, 224(3): 923–930

    Article  CAS  Google Scholar 

  35. Kikuchi T, Shibuya H, Jones J T. Molecular and biochemical characterization of an endo-ß-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria. Biochemical Journal, 2005, 389(1): 117–125

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Science and Engineering Research Council (NSERC) of Canada for the financial support via a strategic partnership grant (#380768-09). Di Li also thanks the China Scholarship Council for a CSC PhD scholarship(#200001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaotao Bi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Yewalkar, S., Bi, X. et al. Heterologous expression of LamA gene encoded endo-β-1,3-glucanase and CO2 fixation by bioengineered Synechococcus sp. PCC 7002. Front. Environ. Sci. Eng. 11, 9 (2017). https://doi.org/10.1007/s11783-017-0910-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0910-1

Keywords

Navigation