Skip to main content
Log in

Aerobic granulation of pure bacterial strain Bacillus thuringiensis

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

The objective of this study is to cultivate aerobic granules by pure bacterial strain, Bacillus thuringiensis, in a sequencing batch reactor. Stable granules sized 2.0–2.2 mm were formed in the reactor after a five-week cultivation. These granules exhibited excellent settling attributes, and degraded phenol at rates of 1.49 and 1.19 g phenol/(g VSS?d) at 250 and 1500 mg/L of phenol concentration, respectively. Confocal laser scanning microscopic test results show that Bacillus thuringiensis was distributed over the initial small aggregates, and the outer edge of the granule was away from the core regime in the following stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beun J J, Hendriks A, Loosdrecht M C M van, Morgenroth E, Wilderer P A, Heijnen J J. Aerobic granulation in a sequencing batch reactor. Water Research, 1999, 33: 2283–2290

    Article  CAS  Google Scholar 

  2. Peng D C, Bernet N, Delgenes J P, Moletta R. Aerobic granular sludge-a case report. Water Research, 1999, 33: 890–893

    Article  CAS  Google Scholar 

  3. Tay J H, Liu Q S, Liu Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. Journal of Applied Microbiology, 2001, 91: 168–175

    Article  CAS  Google Scholar 

  4. Su K Z, Yu H Q. Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater. Environmental Science & Technology, 2005, 39: 2818–2828

    Article  CAS  Google Scholar 

  5. Adav S S, Chen M Y, Lee D J, Ren N Q. Degradation of phenol by Acinetobactor strain isolated from aerobic granules. Chemosphere, 2007, 67: 1566–1572

    Article  CAS  Google Scholar 

  6. Adav S S, Chen M Y, Lee D J, Ren N Q. Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis. Biotechnology and Bioengineering, 2007, 96: 844–852

    Article  CAS  Google Scholar 

  7. Adav S S, Lee D J, Ren N Q. Biodegradation of pyridine using aerobic granules in the presence of phenol. Water Research, 2007, 41: 2903–2910

    Article  CAS  Google Scholar 

  8. Jiang H L, Tay J H, Maszenan A M, Tay S T L. Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Applied and Environmental Microbiology, 2004, 70: 6767–6775

    Article  CAS  Google Scholar 

  9. Jiang H L, Tay J H, Maszenan A M, Tay S T L. Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains. Environmental Science & Technology, 2006, 40: 6137–6142

    Article  CAS  Google Scholar 

  10. Jiang H L, Tay S T L, Maszenan A M, Tay J H. Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules. FEMS Microbiology Ecology, 2006, 57: 182–191

    Article  CAS  Google Scholar 

  11. Jiang H L, Maszenan A M, Tay J H. Bioaugmentation of coexistence of two functionally similar bacterial strains in aerobic granules. Applied Microbiology and Biotechnology, 2007, 75: 1191–1200

    Article  CAS  Google Scholar 

  12. Adav S S, Lee D J. Physiological characterization and interactions of isolates in phenol degrading aerobic granules. Applied Microbiology and Biotechnology, 2008, doi: 10.1007/s00253-008-1370-0

  13. Chen M Y, Lee D J, Tay J H. Distributions of extracellular polymeric substances in aerobic granules. Applied Microbiology and Biotechnology, 2007, 73: 1463–1469

    Article  CAS  Google Scholar 

  14. APHA. The Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington, DC: American Public Health Association, 1998.

    Google Scholar 

  15. Tay J H, Liu Q S, Liu Y. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors. Environmental Technology, 2002, 23: 931–36

    Article  CAS  Google Scholar 

  16. Pinchuk I V, Bressollie, P, Verneuil B, Fenet B, Sorokulova I B, Megraud, F, Urdaci M C. In vitro anti-helicobacter pylori activity of the probiotic strain bacillus subtilis 3 is due to secretion of antibiotics. Antimicrobial Agents and Chemotherapy, 2001, 45: 3156–3161

    Article  CAS  Google Scholar 

  17. Park S C, Lee J R, Shin S O, Park Y, Lee S Y, Hahm K S. Characterization of a heat-stable protein with antimicrobial activity from Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2008, doi:10.1016/j.bbrc. 2007.07.188

  18. Naclerio G, Ricca E, Sacco M, Felic, M. Antimicrobial activity of a newly identified bacteriocin of bacillus cereus. Applied and Environmental Microbiology, 1993, 59: 4313–4316

    CAS  Google Scholar 

  19. Novotny J F, Perry J J. Characterization of bacteriocins from two strains of Bacillus thermoleovorans, a thermophilic hydrocarbon-utilizing species. Applied and Environmental Microbiology, 1992, 58: 2393–2396

    CAS  Google Scholar 

  20. Kiaenhammer T R. Bacteriocins of lactic acid bacteria. Biochimie, 1988, 70: 337–349

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duu-Jong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adav, S.S., Lee, DJ. Aerobic granulation of pure bacterial strain Bacillus thuringiensis . Front. Environ. Sci. Eng. China 2, 461–467 (2008). https://doi.org/10.1007/s11783-008-0066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-008-0066-0

Keywords

Navigation