Skip to main content
Log in

Effects of humic acid fractions with different polarities on photodegradation of 2,4-D in aqueous environments

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

Four fractions (A, B, C, and D) of humic acids (HAs) were separated based on the polarity from weak to strong. UV-vis absorption and Fourier transform infrared spectroscopy (FTIR) analysis show that the fractions C and Dpossessedmore aromatic C=C content. The influences of HAs and their fractions on the photolysis were investigated by the photodegradation of 2,4-D solutions under simulated solar light irradiation. The degradation rate of 2,4-D was found to decrease in the presence of bulk HAs or their fractions especially at high HAs concentration. The fractions of strong polarity C and D retarded the degradation rate more than the fractions of weak polarity A and B. This could be attributed to the different absorption intensity of the four HAs fractions in the order of D ⩾ C > A > B, and the stronger π-π electron donor-acceptor interactions between the strong polar fractions and 2,4-D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones M N, Bryan N D. Colloidal properties of humic substances. Advances in Colloid and Interface Science, 1998, 78: 1–48

    Article  CAS  Google Scholar 

  2. Li L, Zhao Z Y, Huang W L, Peng P, Sheng G, Fu J. Characterization of humic acids fractionated by ultrafiltration. Organic Geochemistry, 2004, 35: 1025–1037

    Article  CAS  Google Scholar 

  3. Hessler DP, Frimmel F H, Oliveros E, Braun A M. Quenching of singlet oxygen (1Δg) by humic substances. Journal of Photochemistry and Photobiology B: Biology, 1996, 36: 55–60

    Article  CAS  Google Scholar 

  4. Schmitt Ph, Freitag D, Sanlaville Y, Lintelman J. Capillary electrophoretic study of atrazine photolysis. Journal of Chromatography A, 1995, 709: 215–225

    Article  CAS  Google Scholar 

  5. Minero C, Pramauro E, Pelizzetti E, Dolci M, Marchesini A. Photosensitized transformations of atrazine under simulated sunlight in aqueous humic acid solution. Chemosphere, 1992, 24: 1597–1606

    Article  CAS  Google Scholar 

  6. Ou X X, Quan X, Chen S, Zhao H, Zhang Y. Atrazine photodegradation in aqueous solution induced by interaction of humic acids and iron: Photoformation of iron(II) and hydrogen peroxide. Journal of Agricultural and Food Chemistry, 2007, 55: 8650–8656

    Article  CAS  Google Scholar 

  7. Garbin J R, Milori D M B P, Simões M L, da Silva W T L, Neto L M. Influence of humic substances on the photolysis of aqueous pesticide residues. Chemosphere, 2007, 66: 1692–1698

    Article  CAS  Google Scholar 

  8. Selli E, Baglio D, Montanarella L, Bidoglio G. Role of humic acids in the TiO2-photocatalyzed degradation of tetrachloroethene in water. Water Research, 1999, 33(8): 1827–1836

    Article  CAS  Google Scholar 

  9. Tchaikovskaya O N, Sokolova I V, Yudina N V. Fluorescence analysis of photoinduced degradation of ecotoxicants in the presence of humic acids. Luminescence, 2005, 20: 187–191

    Article  CAS  Google Scholar 

  10. Bachman J, Patterson H H. Photodecomposition of the carbamate pesticide carbofuran: Kinetics and the influence of dissolved organic matter. Environmental Science and Technology, 1999, 33: 874–881

    Article  CAS  Google Scholar 

  11. Aguer J P, Richard C, Andreux F. Comparison of the photoinductive properties of commercial, synthetic and soilextracted humic substances. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 103: 163–168

    Article  CAS  Google Scholar 

  12. Curtis M A, Witt A F, Schram S B, Rogers L B. Humic acid fractionation using a nearly linear pH gradient. Analytical Chemistry, 1981, 53: 1195–1199

    Article  CAS  Google Scholar 

  13. Aguer J P, Trubetskaya O, Trubetskoj O, Richard C. Photoinductive properties of soil humic acids and their fractions obtained by tandem size exclusion chromatography-polyacrylamide gel electrophoresis. Chemosphere, 2001, 44: 205–209

    Article  CAS  Google Scholar 

  14. Wu F C, Evans R D, Dillon P J, Cai Y R. Rapid quantification of humic and fulvic acids by HPLC in natural waters. Applied Geochemistry, 2007, 22: 1598–1605

    Article  CAS  Google Scholar 

  15. Trubetskoj O A, Trubetskaya O E, Afanas’eva G V, Reznikova O I, Saizjimenez C. Polyacrylamide gel electro-phoresis of soil humic acid fractionated by size-exclusion chromatography and ultrafiltration. Journal of Chromatography A, 1997, 767: 285–292

    Article  CAS  Google Scholar 

  16. Wu F C, Evans R D, Dillon P J. High-performance liquid chromatographic fractionation and characterization of fulvic acid. Analytica Chimica Acta, 2002, 464: 47–55

    Article  CAS  Google Scholar 

  17. Cavani L, Ciavatta C, Trubetskaya O E, Reznikova O I, Trubestskoj O A. Capillary zone electrophoresis of soil humic acid fractions obtained by coupling size-exclusion chromatography and polyacrylamide gel electrophoresis. Journal of Chromatography A, 2003, 983: 263–270

    Article  CAS  Google Scholar 

  18. Richard C, Trubetskaya O, Trubetskoj O, Reznikova O I, Afanaseva G, Guyot G. Key role of the low molecular size fraction of soil humic acids for fluorescence and photoinductive activity. Environmental Science and Technology, 2004, 38: 2052–2057

    Article  CAS  Google Scholar 

  19. Wen B, Zhang J J, Zhang S Z, Shan X Q, Khan S U, Xing B. Phenanthrene sorption to soil humic acid and different humin fractions. Environmental Science and Technology, 2007, 41: 3165–3171

    Article  CAS  Google Scholar 

  20. Daidai M, Kobayashi F, Mtui G, et al. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by ozonation and TiO2/UV treatment. Journal of Chemical Engineering of Japan, 2007, 40(4): 378–384

    Article  CAS  Google Scholar 

  21. de Amarante O P, Brito N M, dos Santos T C R, Nunes G S. Determination of 2,4-dichlorophenoxyacetic acid and its major transformation product in soil samples by liquid chromatographic analysis. Talanta, 2003, 60: 115–121

    Article  CAS  Google Scholar 

  22. Campos S X, Vieira E M, Cordeiro P J M, Rodrigues-Fo E, Murgu M. Degradation of the herbicide 2, 4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt by gamma radiation from cobalt-60 in aqueous solution containing humic acid. Radiation Physics and Chemistry, 2003, 68: 781–786

    Article  CAS  Google Scholar 

  23. Davis W M, Erickson C L, Johnston C T, Delfine J J. Quantitative Fourier transform infrared spectroscopic investigation of humic substance functional group composition. Chemosphere, 1999, 38(12): 2913–2928

    Article  CAS  Google Scholar 

  24. Korshin G V, Li C W, Benjamin M M. Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Research, 1997, 31(7): 1787–1795

    Article  CAS  Google Scholar 

  25. Fuentes M, González-Gaitano G, García-Mina J M. The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. Organic Geochemistry, 2006, 37: 1949–1959

    Article  CAS  Google Scholar 

  26. Chen J, Gu B H, LeBoeuf E J, Pan H, Dai S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere, 2002, 48: 59–68

    Article  CAS  Google Scholar 

  27. Fukushima M, Tatsumi K, Nagao S. Degradation characteristics of humic acid during photo-Fenton processes. Environmental Science and Technology, 2001, 35: 3683–3690

    Article  CAS  Google Scholar 

  28. Almendros G, Kgathi D, Sekhwela M, Zancada M, Tinoco P, Pardo T. Biogeochemical assessment of resilient humus formations from virgin and cultivated northern Botswana soils. Journal of Agricultural and Food Chemistry, 2003, 51: 4321–4330

    Article  CAS  Google Scholar 

  29. Davies G, Fataftah A, Radwan A, Jansen S A. Isolation of humic acid from the terrestrial plant Brugmansia sanguinea. The Science of the Total Environment, 1997, 201: 79–87

    Article  CAS  Google Scholar 

  30. Palladino G, Ferri D, Manfredi C, Vasca E. Potentiometric determination of the total acidity of humic acids by constantcurrent coulometry. Analytica Chimica Acta, 2007, 582: 164–173

    Article  CAS  Google Scholar 

  31. Enriquez R, Pichat P. Interactions of humic acid, quinoline, and TiO2 in water in relation to quinoline photocatalytic removal. Langmuir, 2001, 17: 6132–6137

    Article  CAS  Google Scholar 

  32. Fu H B, Quan X, Liu Z Y, Chen S. Photoinduced transformation of γ-HCH in the presence of dissolved organic matter and enhanced photoreactive activity of humate-coated α-Fe2O3. Langmuir, 2004, 20: 4867–4873

    Article  CAS  Google Scholar 

  33. Hesketh N, Jones M N, Tipping E. The interaction of some pesticides and herbicides with humic substances. Analytica Chimica Acta, 1996, 327: 191–201

    Article  CAS  Google Scholar 

  34. Trubetskaya O, Trubetskoj O, Richard C. Photodegrading properties of soil humic acids fractionated by SEC-PAGE set-up. Are they connected with absorbance? Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189: 247–252

    Article  CAS  Google Scholar 

  35. Zhu D, Hyun S, Pignatello J J, Lee L S. Evidence for π-π electron donor-acceptor interactions between π-donor aromatic compounds and π-acceptor sites in soil organic matter through pH effects on sorption. Environmental Science and Technology, 2004, 38: 4361–4368

    Article  CAS  Google Scholar 

  36. Fukushima M, Tanabe Y, Morimoto K, Tatsumi K. Role of humic acid fraction with higher aromaticity in enhancing the activity of a biomimetic catalyst, tetra (p-sulfonatophenyl) porphineiron (III). Biomacromolecules, 2007, 8: 386–391

    Article  CAS  Google Scholar 

  37. Qu F C. Characterization of HA fractions fractionated from soil humic substance and study on their photochemical effects. Dissertation for the Master’s Degree. Dalian: Dalian University of Technology, 2006 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xie Quan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, C., Quan, X., Ou, X. et al. Effects of humic acid fractions with different polarities on photodegradation of 2,4-D in aqueous environments. Front. Environ. Sci. Eng. China 2, 291–296 (2008). https://doi.org/10.1007/s11783-008-0049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-008-0049-1

Keywords

Navigation