Skip to main content
Log in

Catalysis of CuO on degradation of organic substance in Bayer liquid

CuO催化拜尔液中有机物的降解

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this study, catalytic wet oxidation technology was used to remove organic substances from Bayer liquid. First, under the optimal conditions without a catalyst (13.98 g/L of O2 addition, oxidation temperature of 220 °C, and oxidation time of 100 min), the removal efficiencies of total organic carbon, sodium humate, and sodium oxalate were 86.59%, 92.96%, and 71.36%, respectively. The mechanism of a free radical chain reaction of wet oxidation removal of organic substances was studied. Then, under the optimal conditions using CuO as a catalyst (13.98 g/L of O2 addition, the catalytic temperature of 250 °, the catalytic time of 100 min, and the catalyst dose of 6% of the ore added mass), the total organic carbon removal efficiency was 98.36%, and sodium humate and sodium oxalate can basically be removed completely. The catalysis of CuO was mainly reflected in two aspects: the copper hydroxyl complex ([Cu(II)(OH)x]2−x) formed by the dissolution of CuO was catalyzed based on the complex reaction mechanism, and the dissolved CuO catalyzed the free radical chain reaction. The catalytic wet oxidation technology exhibited high organic substance removal efficiency, especially for removing sodium oxalate, which could negatively affect the alumina products.

摘要

本研究采用以O2为氧化剂、CuO为催化剂的催化湿法氧化技术去除拜尔液中的有机物。首先, 在O2 添加量为13.98 g/L、氧化温度为220 ℃、氧化时间为100 min、不添加CuO的条件下, 总有机碳、 腐植酸钠和草酸钠的去除率分别为86.59%、92.96%和71.36%。在此基础上, 研究了O2氧化拜尔液中 有机物的自由基链式反应机理。然后, 在CuO 添加量为6%、O2 添加量为13.98 g/L、催化温度为 250 ℃、催化时间为100 min 的最佳条件下, 总有机碳去除率为98.36%, 腐植酸钠和草酸钠基本能够 被全部去除。CuO形成的铜羟基络合物([Cu(II)(OH)x]2−x)基于络合反应机理是催化有机物降解的主要 原因, 溶解的CuO直接催化的自由基链式反应是第二个原因。催化湿法氧化技术能够有效去除拜尔液 中的有机物, 尤其是对氧化铝生产危害较大的草酸钠。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. ZHOU Guo-tao, WANG Yi-lin, QI Tian-gui, et al. Toward sustainable green alumina production: A critical review on process discharge reduction from gibbsitic bauxite and large-scale applications of red mud [J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109433. DOI: https://doi.org/10.1016/j.jece.2023.109433.

    Article  Google Scholar 

  2. DING Xing-yang, CHEN Shao-fei. Optimizing the digestion process conditions of Guinea bauxite [J]. Light Metals, 2022(9): 9–11. (in Chinese)

  3. YANG Chong-yu. Light metal metallurgy [M]. Beijing: Metallurgical Industry Press, 2022. (in Chinese)

    Google Scholar 

  4. LÜ Guo-zhi, ZHANG Ting-an, WANG Xiao-xiao, et al. Effects of intense magnetic field on digestion and settling performances of bauxite [J]. Journal of Central South University, 2014, 21(6): 2168–2175. DOI: https://doi.org/10.1007/s11771-014-2167-1.

    Article  Google Scholar 

  5. POWER G, LOH J. Organic compounds in the processing of lateritic bauxites to alumina Part 1: Origins and chemistry of organics in the Bayer process [J]. Hydrometallurgy, 2010, 105(1–2): 1–29. DOI: https://doi.org/10.1016/j.hydromet.2010.07.006.

    Article  Google Scholar 

  6. ZHANG Ye, XU Rui, TANG Hong-hu, et al. A review on approaches for hazardous organics removal from Bayer liquors [J]. Journal of Hazardous Materials, 2020, 397: 122772. DOI: https://doi.org/10.1016/j.jhazmat.2020.122772.

    Article  Google Scholar 

  7. BUSETTI F, BERWICK L, McDONALD S, et al. Physicochemical characterization of organic matter in bayer liquor [J]. Industrial & Engineering Chemistry Research, 2014, 53(15): 6544–6553. DOI: https://doi.org/10.1021/ie4028268.

    Article  Google Scholar 

  8. LIU Jin-wei, HU Hui-ping, WANG Meng, et al. Synthesis of modified polyacrylamide with high content of hydroxamate groups and settling performance of red mud [J]. Journal of Central South University, 2015, 22(6): 2073–2080. DOI: https://doi.org/10.1007/s11771-015-2731-3.

    Article  Google Scholar 

  9. LI Meng-nan, LIU Zhan-wei, YAN Heng-wei, et al. Removal of organic compounds from Bayer liquor by oxidation with sodium nitrate [J]. Hydrometallurgy, 2023, 215: 105972. DOI: https://doi.org/10.1016/j.hydromet.2022.105972.

    Article  Google Scholar 

  10. POWER G, LOH J S C, VERNON C. Organic compounds in the processing of lateritic bauxites to alumina Part 2: Effects of organics in the Bayer process [J]. Hydrometallurgy, 2012, 127–128: 125–149. DOI: https://doi.org/10.1016/j.hydromet.2012.07.010.

    Article  Google Scholar 

  11. YU Hai-yan, ZHANG Bai-yong, PAN Xiao-lin, et al. Effect of oxalate on seed precipitation of gibbsite from sodium aluminate solution [J]. Journal of Central South University, 2020, 27(3): 772–779. DOI: https://doi.org/10.1007/s11771-020-4330-1.

    Article  Google Scholar 

  12. WILSON M A, ELLIS A V, LEE G S H, et al. Structure of molecular weight fractions of bayer humic substances. 1. low-temperature products [J]. Industrial & Engineering Chemistry Research, 1999, 38(12): 4663–4674. DOI: https://doi.org/10.1021/ie9903590.

    Article  Google Scholar 

  13. HEFTER G, TROMANS A, MAY P M, et al. Solubility of sodium oxalate in concentrated electrolyte solutions [J]. Journal of Chemical & Engineering Data, 2018, 63(3): 542–552. DOI: https://doi.org/10.1021/acs.jced.7b00690.

    Article  Google Scholar 

  14. LAIRD D W, ROWEN C C, MACHOLD T, et al. Volatile products from the degradation of organics in a synthetic bayer liquor [J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3613–3617. DOI: https://doi.org/10.1021/ie3024824.

    Article  Google Scholar 

  15. WHELAN T J, ELLIS A, KAMALI KANNANGARA G S, et al. Macromolecules in the bayer process [J]. Reviews in Chemical Engineering, 2003, 19(5): 431–471. DOI: https://doi.org/10.1515/revce.2003.19.5.431.

    Article  Google Scholar 

  16. LÜ Guo-zhi, ZHANG Ting-an, BAO Li, et al. Roasting pretreatment of high-sulfur bauxite [J]. The Chinese Journal of Process Engineering, 2008, 8(5): 892–896. (in Chinese)

    Google Scholar 

  17. WELLINGTON M A. Effect of thermal treatment of bauxite ore on carbon (organic and inorganic) content and solubility in bayer process liquor [J]. Industrial & Engineering Chemistry Research, 2013, 52(4): 1434–1438. DOI: https://doi.org/10.1021/ie3024005.

    Article  Google Scholar 

  18. WU Peng, LIU Gui-hua, LI Xiao-bin, et al. Removal of organics from Bayer liquors via foam flotation [J]. Journal of Cleaner Production, 2022, 336: 130353. DOI: https://doi.org/10.1016/j.jclepro.2021.130353.

    Article  Google Scholar 

  19. LIU Wen-li, HU Yue-hua, SUN Wei. Separation of diaspore from bauxite by selective flocculation using hydrolyzed polyacrylamide [J]. Journal of Central South University, 2014, 21(4): 1470–1476. DOI: https://doi.org/10.1007/s11771-014-2087-0.

    Article  Google Scholar 

  20. ZHANG Bai-yong, PAN Xiao-lin, WANG Jiang-zhou, et al. Reaction kinetics and mechanism of calcium oxide in dilute sodium aluminate solution with oxalate based on lime causticization [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(6): 1312–1322. DOI: https://doi.org/10.1016/s1003-6326(19)65038-7.

    Article  Google Scholar 

  21. LIU Gui-hua, DONG Wen-bo, QI Tian-gui, et al. Behavior of calcium oxalate in sodium aluminate solutions [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(8): 1878–1887. DOI: https://doi.org/10.1016/s1003-6326(17)60212-7.

    Article  Google Scholar 

  22. SENTANA I, DE LA RUBIA M A, RODRÍGUEZ M, et al. Removal of natural organic matter by cationic and anionic polyacrylonitrile membranes. The effect of pressure, ionic strength and pH [J]. Separation and Purification Technology, 2009, 68(3): 305–311. DOI: https://doi.org/10.1016/j.seppur.2009.05.017.

    Article  Google Scholar 

  23. LIU Zhen, MOHSENI M, SAUVÉ S, et al. Segmented regeneration of ion exchange resins used for natural organic matter removal [J]. Separation and Purification Technology, 2022, 303: 122271. DOI: https://doi.org/10.1016/j.seppur.2022.122271.

    Article  Google Scholar 

  24. YANG Ni, TIAN Lin, XIE Gang, et al. Removal of organics in seeded precipitation mother liquor of bayer process by seed-crystallization [J]. Hydrometallurgy of China, 2020, 39(4): 341–344.

    Google Scholar 

  25. ALI I, TAN Xiao, LI Ju-ying, et al. Interaction of microplastics and nanoplastics with natural organic matter (NOM) and the impact of NOM on the sorption behavior of anthropogenic contaminants-A critical review [J]. Journal of Cleaner Production, 2022, 376: 134314. DOI: https://doi.org/10.1016/j.jclepro.2022.134314.

    Article  Google Scholar 

  26. WU Peng, LIU Gui-hua, LI Xiao-bin, et al. Effects of CMC and micelle formation on the removal of sodium benzoate or sodium stearate in a sodium aluminate solution [J]. JOM, 2020, 72(1): 263–269. DOI: https://doi.org/10.1007/s11837-019-03853-6.

    Article  Google Scholar 

  27. MARCIANO S, MUGNIER N, CLERIN P, et al. Nanofiltration of Bayer process solutions [J]. Journal of Membrane Science, 2006, 281(1–2): 260–267. DOI: https://doi.org/10.1016/j.memsci.2006.03.040.

    Article  Google Scholar 

  28. JIA Li-pan, HUANG Jiang-jiang, MA Ze-long, et al. Research and development trends of hydrometallurgy: An overview based on Hydrometallurgy literature from 1975 to 2019 [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11): 3147–3160.

    Article  Google Scholar 

  29. LOH J S C, BRODIE G M, POWER G, et al. Wet oxidation of precipitation yield inhibitors in sodium aluminate solutions: Effects and proposed degradation mechanisms [J]. Hydrometallurgy, 2010, 104(2): 278–289. DOI: https://doi.org/10.1016/j.hydromet.2010.06.016.

    Article  Google Scholar 

  30. PASTOR M A S, BOTELHO JUNIOR A B, ESPINOSA D C R, et al. Application of advanced oxidation process using ozonation assisted with hydrogen peroxide for organic compounds removal from bayer liquor [J]. Ozone: Science & Engineering, 2022, 44(3): 291–301. DOI: https://doi.org/10.1080/01919512.2021.1924118.

    Article  Google Scholar 

  31. PASTOR M A S, BOTELHO A B, TENÓRIO J A S, et al. Use of O3 and O3/H2O2 for degradation of organic matter from Bayer liquor towards new resource management: Kinetic and mechanism [J]. The Canadian Journal of Chemical Engineering, 2023, 101(4): 2094–2103. DOI: https://doi.org/10.1002/cjce.24605.

    Article  Google Scholar 

  32. MANSOURI L, TIZAOUI C, GEISSEN S U, et al. A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water [J]. Journal of Hazardous Materials, 2019, 363: 401–411. DOI: https://doi.org/10.1016/j.jhazmat.2018.10.003.

    Article  Google Scholar 

  33. CAI Can. The reaction behavior research of organic matter in high pressure dissolving of Bayer process [D]. Guiyang: Guizhou University, 2016. (in Chinese)

    Google Scholar 

  34. WEI Jie. Basic research on the utilization of aluminum dross resources [D]. Kunming: Kunming University of Science and Technology, 2022. (in Chinese)

    Google Scholar 

  35. TARDIO J, BHARGAVA S, PRASAD J, et al. Catalytic wet oxidation of the sodium salts of citric, lactic, malic and tartaric acids in highly alkaline, high ionic strength solution [J]. Topics in Catalysis, 2005, 33(1): 193–199. DOI: https://doi.org/10.1007/s11244-005-2527-z.

    Article  Google Scholar 

  36. BHARGAVA S K, TARDIO J, JANI H, et al. Catalytic wet air oxidation of industrial aqueous streams [J]. Catalysis Surveys from Asia, 2007, 11(1): 70–86. DOI: https://doi.org/10.1007/s10563-007-9020-6.

    Article  Google Scholar 

  37. TARDIO J, BHARGAVA S, EYER S, et al. Interactions between specific organic compounds during catalytic wet oxidation of bayer liquor [J]. Industrial & Engineering Chemistry Research, 2004, 43(4): 847–851. DOI: https://doi.org/10.1021/ie030539g.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LI Meng-nan and LIU Zhan-wei conducted the literature review and wrote the manuscript. YAN Heng-wei and MA Wen-hui developed the overarching research goals and edited the draft of manuscript. XIA Cheng-cheng edited the manuscript. LIU Qiang validated the proposed method with practical experiments.

Corresponding authors

Correspondence to Zhan-wei Liu  (刘战伟) or Heng-wei Yan  (颜恒维).

Ethics declarations

LI Meng-nan, LIU Zhan-wei, YAN Heng-wei, MA Wen-hui, XIA Cheng-cheng, and LIU Qiang declare that they have no conflict of interest.

Additional information

Foundation item: Projects(22068021, 52064030) supported by the National Natural Science Foundation of China; Project (202305AC160064) supported by the Yunnan Young and Middle-aged Academic and Technical Leaders Reserve Talent Program, China; Projects(202202AG050011, 202202AG050007) supported by Yunnan Major Scientific and Technological Program, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Mn., Liu, Zw., Yan, Hw. et al. Catalysis of CuO on degradation of organic substance in Bayer liquid. J. Cent. South Univ. 31, 813–826 (2024). https://doi.org/10.1007/s11771-024-5612-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5612-9

Key words

关键词

Navigation