Skip to main content
Log in

Bearing effect of arched frame structures with longitudinal connections in large-section tunnels

大断面隧道初期支护中纵向连接与拱架联合承载效应

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Aiming to improving the out-of-plane instability of I-steel arches in large-section tunnels, this study conducted the full-scale test of a single arch, the numerical test of the arched frame structures formed by the longitudinal connections and the arches, and the field comparison test. The results indicated that the failure mode of the single arch was local out-of-plane instability, leading to a loss of overall bearing capacity. The in-plane bearing capacity and out-of-plane stability of arched frame structures considering longitudinal connection bearing capacity are enhanced. In addition, the bearing capacity of the primary support can be fully utilized by adjusting the longitudinal connection spacing and the arch spacing to improve the internal force sharing ratio of the arched frame structure and the shotcrete. However, the longitudinal connection spacing should be less than 1500 mm, and the arch spacing should be less than 1200 mm. Therefore, without changing the existing structural form of the primary support, the arched frame structures with spatial bearing effect formed by rationally arranged longitudinal connections and arches can not only ensure the bearing capacity of the primary support, but also improve construction efficiency and economic benefits. The research findings can guide the structural design of primary support for large-section tunnels.

摘要

针对大断面隧道初期支护拱架在承载时易发生平面外失稳的问题,本文通过开展单拱架全比尺 试验和考虑纵向连接的拱框架结构的数值试验以及现场对比试验,对纵向连接与拱架组成的拱框架结 构进行优化研究,使其横向上有足够承载能力、纵向上有较高稳定性。研究结果表明,单个拱架的破 坏模式是局部面外失稳导致整体承载力丧失,考虑纵向连接的拱框架结构的平面内承载力和平面外稳 定性都得到增强。通过调整纵向连接间距和拱架间距也可以调整初期支护拱框架结构和喷射混凝土的 内力分担比,以充分发挥初期支护的承载能力,但纵向连接间距应小于1500 mm,拱架间距也应小于 1200 mm。因而,在不改变初期支护现有结构形式的前提下,通过合理地布设纵向连接与拱架形成的 具有空间承载效应的拱框架结构,不仅可以保证初期支护的承载能力,而且还提高施工效率和经济效 益。研究成果可指导大断面隧道初期支护结构设计。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. ZHAO Yong, LI Peng-fei. A statistical analysis of China’s traffic tunnel development data [J]. Engineering, 2018, 4(1): 3–5. DOI: https://doi.org/10.1016/j.eng.2017.12.011.

    Article  MathSciNet  Google Scholar 

  2. REN Rui, ZHOU Hui, HU Zhao, et al. Statistical analysis of fire accidents in Chinese highway tunnels 2000-2016 [J]. Tunnelling and Underground Space Technology, 2019, 83: 452–460. DOI: https://doi.org/10.1016/j.tust.2018.10.008.

    Article  Google Scholar 

  3. ZHANG Jun-ru, WU Jie, YAN Cong-wen, et al. Construction technology of super-large section of highway tunnels with four or more lanes in China [J]. China Journal of Highway and Transport, 2020, 33(1): 14–31.

    Google Scholar 

  4. AN Yong-lin, ZHOU Jin, OUYANG Peng-bo, et al. Analysis of tunnel face stability with advanced pipes support [J]. Journal of Central South University, 2021, 28(2): 604–617. DOI: https://doi.org/10.1007/s11771-021-4625-x.

    Article  Google Scholar 

  5. ZHANG Ding-li. Essential issues and their research progress in tunnel and underground engineering 1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 3–21. DOI: https://doi.org/10.6052/0459-1879-16-348. DOI: https://doi.org/10.6052/0459-1879-16-348.

    Google Scholar 

  6. ZHAO Jin-peng, TAN Zhong-sheng, YU Rong-sen, et al. Mechanical responses of a shallow-buried super-large-section tunnel in weak surrounding rock: A case study in Guizhou [J]. Tunnelling and Underground Space Technology, 2023, 131: 104850. DOI: https://doi.org/10.1016/j.tust.2022.104850.

    Article  Google Scholar 

  7. LI Shu-cai, LIU Bin, XU Xin-ji, et al. An overview of ahead geological prospecting in tunneling [J]. Tunnelling and Underground Space Technology, 2017, 63: 69–94. DOI: https://doi.org/10.1016/j.tust.2016.12.011.

    Article  Google Scholar 

  8. ZHAO Yan-ru, CHEN Xiang-sheng, HU Biao, et al. Evolution of tunnel uplift and deformation induced by an upper and collinear excavation: A case study from Shenzhen metro [J]. Transportation Geotechnics, 2023, 39: 100953. DOI: https://doi.org/10.1016/j.trgeo.2023.100953.

    Article  Google Scholar 

  9. QIAO Ya-fei, TANG Jie, LIU Guo-zhao, et al. Longitudinal mechanical response of tunnels under active normal faulting [J]. Underground Space, 2022, 7(4): 662–679. DOI: https://doi.org/10.1016/j.undsp.2021.12.002.

    Article  Google Scholar 

  10. LEI Ming-feng, LIN Da-yong, YANG Wei-chao, et al. Model test to investigate failure mechanism and loading characteristics of shallow-bias tunnels with small clear distance [J]. Journal of Central South University, 2016, 23(12): 3312–3321. DOI: https://doi.org/10.1007/s11771-016-3397-1.

    Article  Google Scholar 

  11. JIANG Bei, MA Feng-lin, WANG Qi, et al. Drilling-based measuring method for the c-φ parameter of rock and its field application [J]. International Journal of Mining Science and Technology, 2023, 34(1): 65–76. DOI: https://doi.org/10.1016/j.ijmst.2023.06.005.

    Article  Google Scholar 

  12. LI Shu-cai, GAO Cheng-lu, ZHOU Zong-qing, et al. Analysis on the precursor information of water inrush in Karst tunnels: A true triaxial model test study [J]. Rock Mechanics and Rock Engineering, 2019, 52(2): 373–384. DOI: https://doi.org/10.1007/s00603-018-1582-2.

    Article  Google Scholar 

  13. ZHENG Gang, WANG Rui-kun, LEI Hua-yang, et al. A novel sequential excavation method for constructing large-cross-section tunnels in soft ground: Practice and theory [J]. Tunnelling and Underground Space Technology, 2022, 128: 104626. DOI: https://doi.org/10.1016/j.tust.2022.104626.

    Article  Google Scholar 

  14. YANG Xiao-li, JIN Qi-yun, MA Jun-qiu. Pressure from surrounding rock of three shallow tunnels with large section and small spacing [J]. Journal of Central South University, 2012, 19(8): 2380–2385. DOI: https://doi.org/10.1007/s11771-012-1285-x.

    Article  Google Scholar 

  15. JIANG Bei, XIN Zhong-xin, ZHANG Xiu-feng, et al. Mechanical properties and influence mechanism of confined concrete arches in high-stress tunnels [J]. International Journal of Mining Science and Technology, 2023, 33(7): 829–841. DOI: https://doi.org/10.1016/j.ijmst.2023.03.008.

    Article  Google Scholar 

  16. MA Kai-meng, ZHANG Ji-chun, ZHANG Jun-ru, et al. Longitudinal connection effect on initial support steel frames in tunnels—Take the traffic tunnels as examples [J]. Underground Space, 2022, 7(4): 608–622. DOI: https://doi.org/10.1016/j.undsp.2021.11.007.

    Article  Google Scholar 

  17. TB 10003—2016. Code for design of railway tunnel[S]. Beijing: China Railway Publishing House, 2016. (in Chinese)

    Google Scholar 

  18. JTG 3370. 1—2018. Specifications for design of highway tunnels, Section 1: Civil engineering [S]. Beijing: China Communications Press, 2018. (in Chinese)

    Google Scholar 

  19. Standard specification for tunneling-2016: Mountain tunnels [S]. Tokyo: Japan Society of Civil Engineers, 2018.

  20. SUN Hui-bin. Study on stability bearing mechanism and key technologies of assembly confined concrete support for large section tunnel [D]. Ji’nan: Shandong University, 2019. (in Chinese)

    Google Scholar 

  21. CHEN Hong-bin. Research on bearing mechanism of arch primary support for super large section tunnel [D]. Ji’nan: Shandong University, 2018. (in Chinese)

    Google Scholar 

  22. CHEN Hong-bin, YOU Xin-hua, YUAN Da-jun, et al. A multi-purpose prototype test system for mechanical behavior of tunnel supporting structure: Development and application [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(2): 467–476. DOI: https://doi.org/10.1016/j.jrmge.2022.10.006.

    Article  Google Scholar 

  23. GAO Xue-chi, LUAN Ying-cheng, HU Chao, et al. Study on bearing mechanism and coupling mechanism of steel arch-concrete composite structure of initial support system of large section tunnel [J]. Geotechnical and Geological Engineering, 2019, 37(6): 4877–4887. DOI: https://doi.org/10.1007/s10706-019-00948-4.

    Article  Google Scholar 

  24. QI Hui, LU Wei, ZHANG Tian-tao, et al. Research on bearing mechanism and spatial layout designing parameters of arch support in large section tunnel [J]. Geotechnical and Geological Engineering, 2019, 37(5): 4421–4434. DOI: https://doi.org/10.1007/s10706-019-00918-w.

    Article  Google Scholar 

  25. WANG Qi, XIN Zhong-xin, JIANG Bei, et al. Comparative experimental study on mechanical mechanism of combined Arches in large section tunnels [J]. Tunnelling and Underground Space Technology, 2020, 99: 103386. DOI: https://doi.org/10.1016/j.tust.2020.103386.

    Article  Google Scholar 

  26. WANG Qi, QIN Qian, JIANG Bei, et al. Mechanized construction of fabricated Arches for large-diameter tunnels [J]. Automation in Construction, 2021, 124: 103583. DOI: https://doi.org/10.1016/j.autcon.2021.103583.

    Article  Google Scholar 

  27. GB 50010—2010. Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese).

    Google Scholar 

  28. XU Guo-wen, GUTIERREZ M. Study on the damage evolution in secondary tunnel lining under the combined actions of corrosion degradation of preliminary support and creep deformation of surrounding rock [J]. Transportation Geotechnics, 2021, 27: 100501. DOI: https://doi.org/10.1016/j.trgeo.2020.100501.

    Article  Google Scholar 

  29. ZHANG Jiao-long, LIU Xian, REN Tian-yu, et al. Numerical analysis of tunnel segments strengthened by steel-concrete composites [J]. Underground Space, 2022, 7(6): 1115–1124. DOI: https://doi.org/10.1016/j.undsp.2022.02.004.

    Article  Google Scholar 

  30. LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics, 1998, 124(8): 892–900. DOI: https://doi.org/10.1061/(asce)0733-9399(1998)124:8(892).

    Article  Google Scholar 

  31. LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299–326. DOI: https://doi.org/10.1016/0020-7683(89)90050-4.

    Article  Google Scholar 

  32. DAMIÁN R, ZAMORANO C I. Environmental impact assessment of high-speed railway tunnel construction: A case study for five different rock mass rating classes [J]. Transportation Geotechnics, 2022, 36: 100817. DOI: https://doi.org/10.1016/j.trgeo.2022.100817.

    Article  Google Scholar 

  33. ZHANG Xu, SU Jie, XU You-jun, et al. Experimental and numerical investigation the effects of insufficient concrete thickness on the damage behaviour of multi-arch tunnels [J]. Structures, 2021, 33: 2628–2638. DOI: https://doi.org/10.1016/j.istruc.2021.06.020.

    Article  Google Scholar 

  34. WANG Qi, JIANG Bei, LI Shu-cai, et al. Experimental studies on the mechanical properties and deformation & failure mechanism of U-type confined concrete arch centering [J]. Tunnelling and Underground Space Technology, 2016, 51: 20–29. DOI: https://doi.org/10.1016/j.tust.2015.10.010.

    Article  Google Scholar 

  35. WANG Zhi-chao, XIE Yong-li, LIU Hou-quan, et al. Analysis on deformation and structural safety of a novel concrete-filled steel tube support system in loess tunnel [J]. European Journal of Environmental and Civil Engineering, 2021, 25(1): 39–59. DOI: https://doi.org/10.1080/19648189.2018.1515665.

    Article  Google Scholar 

  36. MEI Yu-chun, LIU Jun-feng, LI Wei-teng, et al. Study on the supporting performance of concrete filled steel tube Arches with three different cross-sections [J]. Structures, 2022, 40: 1121–1140. DOI: https://doi.org/10.1016/j.istruc.2022.04.072.

    Article  Google Scholar 

  37. SONG Yuan, HUANG Ming-li, ZHANG Xu-dong, et al. Experimental and numerical investigation on bearing capacity of circumferential joint of new spatial steel tubular grid arch in mined tunnel [J]. Symmetry, 2020, 12(12): 2065. DOI: https://doi.org/10.3390/sym12122065.

    Article  Google Scholar 

  38. XU Fei, LI Shu-cai, ZHANG Qian-qing, et al. A new type support structure introduction and its contrast study with traditional support structure used in tunnel construction [J]. Tunnelling and Underground Space Technology, 2017, 63: 171–182. DOI: https://doi.org/10.1016/j.tust.2016.11.012.

    Article  Google Scholar 

  39. ZHANG Ding-li, CHEN Feng-bin, FANG Qian. Study on mechanical characteristics and applicability of primary lining used in tunnel [J]. Engineering Mechanics, 2014, 31(7): 78–84.

    Google Scholar 

  40. WANG Zhi-chao, DU Ke, XIE Yong-li, et al. Buckling analysis of an innovative type of steel-concrete composite support in tunnels [J]. Journal of Constructional Steel Research, 2021, 179: 106503. DOI: https://doi.org/10.1016/j.jcsr.2020.106503.

    Article  Google Scholar 

  41. WANG Zhi-chao, CAI Yuan-cheng, FANG Yong, et al. Local buckling characteristic of hollow π-type steel-concrete composite support in hilly-gully region of loess tunnel [J]. Engineering Failure Analysis, 2023, 143: 106828. DOI: https://doi.org/10.1016/j.engfailanal.2022.106828.

    Article  Google Scholar 

  42. WANG Zhi-chao, CAI Yuan-cheng, XIE Yong-li, et al. Laboratory study on mechanical behavior of hollow π-type steel-concrete composite support in loess tunnel [J]. Tunnelling and Underground Space Technology, 2023, 141: 105280. DOI: https://doi.org/10.1016/j.tust.2023.105280.

    Article  Google Scholar 

  43. ZHAO YONG, HE Hua-wu, LI Peng-fei. Key techniques for the construction of high-speed railway large-section loess tunnels [J]. Engineering, 2018, 4(2): 254–259. DOI: https://doi.org/10.1016/j.eng.2017.07.003.

    Article  Google Scholar 

  44. AN Xue-xu, HU Zhi-ping, SU Yan, et al. Initial support distance of a non-circular tunnel based on convergence constraint method and integral failure criteria of rock [J]. Journal of Central South University, 2022, 29(11): 3732–3744. DOI: https://doi.org/10.1007/s11771-022-5186-3.

    Article  Google Scholar 

  45. CHIAIA B, FANTILLI A P, VALLINI P. Combining fiber-reinforced concrete with traditional reinforcement in tunnel linings [J]. Engineering Structures, 2009, 31(7): 1600–1606. DOI: https://doi.org/10.1016/j.engstruct.2009.02.037.

    Article  Google Scholar 

  46. MASSONE L M, NAZAR F. Analytical and experimental evaluation of the use of fibers as partial reinforcement in shotcrete for tunnels in Chile [J]. Tunnelling and Underground Space Technology, 2018, 77: 13–25. DOI: https://doi.org/10.1016/j.tust.2018.03.027.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CHEN Hong-bin provided the concept and edited the draft of the manuscript. JIANG Bei and JIANG Yu-jing provided the supervision and the resources for the manuscript. CHEN Qing-zuo and WANG Qiang-xun conducted the experimental data collection and processing.

Corresponding author

Correspondence to Bei Jiang  (江贝).

Ethics declarations

CHEN Hong-bin, JIANG Bei, JIANG Yu-jing, CHEN Qing-zuo and WANG Qiang-xun declare that they have no conflict of interest.

Additional information

Foundation item: Project(2023YFC2907600) supported by the National Key Research and Development Program of China; Projects (42277174, 42077267) supported by the National Natural Science Foundation of China; Project(ZR2020JQ23) supported by the Natural Science Foundation of Shandong Province, China; Project(2022JCCXSB03) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Hb., Jiang, B., Jiang, Yj. et al. Bearing effect of arched frame structures with longitudinal connections in large-section tunnels. J. Cent. South Univ. 31, 526–541 (2024). https://doi.org/10.1007/s11771-024-5569-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5569-8

Key words

关键词

Navigation