Skip to main content
Log in

Regulation mechanism of aging behavior and mechanical properties of 2195-T34 Al-Li alloy at different stress levels

不同应力水平对2195-T34 Al−Li合金时效行为的影响机制研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The effect of aging on the mechanical properties of the 2195-T34 Al−Li alloy at different stress levels was investigated. When the stress was below the high-temperature yield strength (YS), the YS and elongation (EL) of the low-stress aged (LSA) and stress-free aged (SFA) specimens were similar. When the stress exceeded the high-temperature YS, the ultimate tensile stress (UTS) and EL of the specimens (HSA specimens) decreased significantly. This decrease suggested that an increase in stress reduced the damage resistance of the material. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) observations showed that variations in the effect of stress on the material properties were attributed to the combined effect of internal precipitate characteristics and Cu-rich precipitates at the grain boundary. The increase in stress induced the segregation of Cu atoms at the grain boundaries to form Cu-rich precipitates, facilitating the formation of precipitation-free zones (PFZ) at the grain boundaries. In addition, Cu-rich precipitates could act as damage nucleation sites, reducing the ductility of the material.

摘要

研究了不同应力水平下2195-T34 Al−Li合金的时效特性变化。当应力低于材料的高温屈服强度(YS)时,低应力时效(LSA)和无应力时效(SFA)试样的屈服强度和延伸率(EL)相近。当应力超过材料的高温屈服强度时,试样的极限拉伸强度(UTS)和伸长率显著下降,表明应力的增加降低了材料的抗破坏性。透射电子显微镜(TEM)和扫描电子显微镜(SEM)的观察结果表明:应力对材料时效性能的影响归因于内部析出物特征和晶界富铜析出物的共同作用。应力的增加促使铜原子在晶界发生偏析形成富铜析出物,同时促进了晶界无沉淀区(PFZ)的形成,而富铜析出物是脆性相,可作为损伤的起始位置,容易导致裂纹萌生和发展,降低材料的延展性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. WANG S C, STARINK M J. Precipitates and intermetallic phases in precipitation hardening Al−Cu−Mg−(Li) based alloys [J]. International Materials Reviews, 2005, 50(4): 193–215. DOI: https://doi.org/10.1179/174328005x14357.

    Article  ADS  Google Scholar 

  2. HONMA T, YANAGITA S, HONO K, et al. Coincidence Doppler broadening and 3DAP study of the pre-precipitation stage of an Al−Li−Cu−Mg−Ag alloy [J]. Acta Materialia, 2004, 52(7): 1997–2003. DOI: https://doi.org/10.1016/j.actamat.2003.12.043.

    Article  ADS  CAS  Google Scholar 

  3. GUPTA R K, NAYAN N, NAGASIREESHA G, et al. Development and characterization of Al−Li alloys [J]. Materials Science and Engineering A, 2006, 420(1–2): 228–234. DOI: https://doi.org/10.1016/j.msea.2006.01.045.

    Article  Google Scholar 

  4. LIU Chun-hui, MA Zi-yao, MA Pei-pei, et al. Multiple precipitation reactions and formation of θ′-phase in a pre-deformed Al−Cu alloy [J]. Materials Science and Engineering A, 2018, 733: 28–38. DOI: https://doi.org/10.1016/j.msea.2018.07.039.

    Article  CAS  Google Scholar 

  5. ABD EL-ATY A, XU Yong, GUO Xun-zhong, et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al−Li alloys: A review [J]. Journal of Advanced Research, 2017, 10: 49–67. DOI: https://doi.org/10.1016/j.jare.2017.12.004.

    Article  PubMed  PubMed Central  Google Scholar 

  6. DORIN T, DE GEUSER F, LEFEBVRE W, et al. Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al−Cu−Li alloy [J]. Materials Science and Engineering A, 2014, 605: 119–126. DOI: https://doi.org/10.1016/j.msea.2014.03.024.

    Article  CAS  Google Scholar 

  7. DONNADIEU P, SHAO Y, DE GEUSER F, et al. Atomic structure of T1 precipitates in Al−Li−Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering [J]. Acta Materialia, 2011, 59(2): 462–472. DOI: https://doi.org/10.1016/j.actamat.2010.09.044.

    Article  ADS  CAS  Google Scholar 

  8. ARAULLO-PETERS V, GAULT B, DE GEUSER F, et al. Microstructural evolution during ageing of Al−Cu−Li−X alloys [J]. Acta Materialia, 2014, 66: 199–208. DOI: https://doi.org/10.1016/j.actamat.2013.12.001.

    Article  ADS  CAS  Google Scholar 

  9. KIM K, ZHOU Bi-cheng, WOLVERTON C. First-principles study of crystal structure and stability of T1 precipitates in Al−Li−Cu alloys [J]. Acta Materialia, 2018, 145: 337–346. DOI: https://doi.org/10.1016/j.actamat.2017.12.013.

    Article  ADS  CAS  Google Scholar 

  10. RINGER S P, MUDDLE B C, POLMEAR I J. Effects of cold work on precipitation in Al−Cu−Mg−(Ag) and Al−Cu−Li−(Mg−Ag) alloys [J]. Metallurgical and Materials Transactions A, 1995, 26(7): 1659–1671. DOI: https://doi.org/10.1007/BF02670753.

    Article  ADS  Google Scholar 

  11. GABLE B M, ZHU A W, CSONTOS A A, et al. The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al−Li−Cu−X alloy [J]. Journal of Light Metals, 2001, 1(1): 1–14. DOI: https://doi.org/10.1016/s1471-5317(00)00002-x.

    Article  Google Scholar 

  12. MA Pei-pei, ZHAN Li-hua, LIU Chun-hui, et al. Pre-strain-dependent natural ageing and its effect on subsequent artificial ageing of an Al−Cu−Li alloy [J]. Journal of Alloys and Compounds, 2019, 790: 8–19. DOI: https://doi.org/10.1016/j.jallcom.2019.03.072.

    Article  CAS  Google Scholar 

  13. LI H Y, KANG W, LU X C. Effect of age-forming on microstructure, mechanical and corrosion properties of a novel Al−Li alloy [J]. Journal of Alloys and Compounds, 2015, 640: 210–218. DOI: https://doi.org/10.1016/j.jallcom.2015.03.212.

    Article  CAS  Google Scholar 

  14. HU Li-bin, ZHAN Li-hua, SHEN Ru-lin, et al. Effects of uniaxial creep ageing on the mechanical properties and micro precipitates of Al−Li−S4 alloy [J]. Materials Science and Engineering A, 2017, 688: 272–279. DOI: https://doi.org/10.1016/j.msea.2017.01.081.

    Article  CAS  Google Scholar 

  15. MA Pei-pei, ZHAN Li-hua, LIU Chun-hui, et al. Strong stress-level dependence of creep-ageing behavior in Al−Cu−Li alloy [J]. Materials Science and Engineering A, 2021, 802: 140381. DOI: https://doi.org/10.1016/j.msea.2020.140381.

    Article  CAS  Google Scholar 

  16. ZHANG Jin, WANG Cheng, ZHANG Yong, et al. Effects of creep aging upon Al−Cu−Li alloy: Strength, toughness and microstructure [J]. Journal of Alloys and Compounds, 2018, 764: 452–459. DOI: https://doi.org/10.1016/j.jallcom.2018.06.103.

    Article  CAS  Google Scholar 

  17. SURESH S, VASUDEVAN A K, TOSTEN M, et al. Microscopic and macroscopic aspects of fracture in lithium-containing aluminum alloys [J]. Acta Metallurgica, 1987, 35(1): 25–46. DOI: https://doi.org/10.1016/0001-6160(87)90210-0.

    Article  CAS  Google Scholar 

  18. VASUDÉVAN A K, LUDWICZAK E A, BAUMANN S F, et al. Grain boundary fracture in Al−Li alloys [J]. Materials Science and Technology, 1986, 2(12): 1205–1209. DOI: https://doi.org/10.1179/mst.1986.2.12.1205.

    Article  ADS  Google Scholar 

  19. JHA S C, SANDERS T H, DAYANANDA M A. Grain boundary precipitate free zones in Al−Li alloys [J]. Acta Metallurgica, 1987, 35(2): 473–482. DOI: https://doi.org/10.1016/0001-6160(87)90253-7.

    Article  CAS  Google Scholar 

  20. CHEN Fei, ZHAN Li-hua, GAO Tuan-jie, et al. Creep aging properties variation and microstructure evolution for 2195 Al−Li alloys with various loading rates [J]. Materials Science and Engineering A, 2021, 827: 142055. DOI: https://doi.org/10.1016/j.msea.2021.142055.

    Article  CAS  Google Scholar 

  21. ZHOU Chang, ZHAN Li-hua, LI He. Improving creep age formability of an Al−Cu−Li alloy by electropulsing [J]. Journal of Alloys and Compounds, 2021, 870: 159482. DOI: https://doi.org/10.1016/j.jallcom.2021.159482.

    Article  CAS  Google Scholar 

  22. JIANG Dan-dan, YANG Rui-bin, WANG De-fa, et al. Effect of external stress on the microstructure and mechanical properties of creep-aged Al−Cu−Li−Ag alloy [J]. Micron, 2021, 143: 103011. DOI: https://doi.org/10.1016/j.micron.2021.103011.

    Article  CAS  PubMed  Google Scholar 

  23. HAN Jia-qiang, WANG Hui-min, XU Ai-jun, et al. Enhanced matrix precipitation of T1 (Al2CuLi) phase in AA2055 Al−Li alloy during stress aging process [J]. Materials Science and Engineering A, 2021, 827: 142057. DOI: https://doi.org/10.1016/j.msea.2021.142057.

    Article  CAS  Google Scholar 

  24. DORIN T, DESCHAMPS A, DE GEUSER F, et al. Quantitative description of the T1 formation kinetics in an Al−Cu−Li alloy using differential scanning calorimetry, small-angle X-ray scattering and transmission electron microscopy [J]. Philosophical Magazine, 2014, 94(10): 1012–1030. DOI: https://doi.org/10.1080/14786435.2013.878047.

    Article  ADS  CAS  Google Scholar 

  25. GUMBMANN E, DE GEUSER F, SIGLI C, et al. Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al−Cu−Li alloy [J]. Acta Materialia, 2017, 133: 172–185. DOI: https://doi.org/10.1016/j.actamat.2017.05.029.

    Article  ADS  CAS  Google Scholar 

  26. GUMBMANN E, LEFEBVRE W, DE GEUSER F, et al. The effect of minor solute additions on the precipitation path of an Al−Cu−Li alloy [J]. Acta Materialia, 2016, 115: 104–114. DOI: https://doi.org/10.1016/j.actamat.2016.05.050.

    Article  ADS  CAS  Google Scholar 

  27. DORIN T, DESCHAMPS A, DE GEUSER F, et al. Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al−Cu−Li alloy [J]. Acta Materialia, 2014, 75: 134–146. DOI: https://doi.org/10.1016/j.actamat.2014.04.046.

    Article  ADS  CAS  Google Scholar 

  28. YANG Jian-shi, LIU Chun-hui, MA Pei-pei, et al. Superposed hardening from precipitates and dislocations enhances strength-ductility balance in Al−Cu alloy [J]. International Journal of Plasticity, 2022, 158: 103413. DOI: https://doi.org/10.1016/j.ijplas.2022.103413.

    Article  CAS  Google Scholar 

  29. RODGERS B I, PRANGNELL P B. Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al−Cu−Li alloy AA2195 [J]. Acta Materialia, 2016, 108: 55–67. DOI: https://doi.org/10.1016/j.actamat.2016.02.017.

    Article  ADS  CAS  Google Scholar 

  30. ZHANG Quan, WU Yu-na, LI Tian-fei, et al. Significant enhancement in tensile strength of room-temperature rolled Al−8Zn−1Mg alloy induced by profuse microbands [J]. Materials Science and Engineering A, 2022, 861: 144359. DOI: https://doi.org/10.1016/j.msea.2022.144359.

    Article  CAS  Google Scholar 

  31. CHEN Yu-meng, WU Yu-na, LI Yun, et al. RT ECAP and rolling bestow high strength and good ductility on a low lithium aluminum alloy [J]. Journal of Materials Research and Technology, 2023, 25: 5561–5574. DOI: https://doi.org/10.1016/j.jmrt.2023.07.009.

    Article  CAS  Google Scholar 

  32. ZHUO Xiao-ru, ZHANG Quan, LIU Huan, et al. Enhanced tensile strength and ductility of an Al−6Si−3Cu alloy processed by room temperature rolling [J]. Journal of Alloys and Compounds, 2022, 899: 163321. DOI: https://doi.org/10.1016/j.jallcom.2021.163321.

    Article  CAS  Google Scholar 

  33. WANG Xiao-ming, SHAO Wen-zhu, JIANG Jian-tang, et al. Quantitative analysis of the influences of pre-treatments on the microstructure evolution and mechanical properties during artificial ageing of an Al−Cu−Li−Mg−Ag alloy [J]. Materials Science and Engineering A, 2020, 782: 139253. DOI: https://doi.org/10.1016/j.msea.2020.139253.

    Article  CAS  Google Scholar 

  34. ZHANG Jin, LI Zhi-de, XU Fu-shun, et al. Regulating effect of pre-stretching degree on the creep aging process of Al−Cu−Li alloy [J]. Materials Science and Engineering A, 2019, 763: 138157. DOI: https://doi.org/10.1016/j.msea.2019.138157.

    Article  CAS  Google Scholar 

  35. YANG Xing-hai, WANG Jun-sheng, ZHANG Ming-shan, et al. Achieving high strength and ductility of Al−Cu−Li alloy via creep aging treatment with different pre-strain levels [J]. Materials Today Communications, 2021, 29: 102898. DOI: https://doi.org/10.1016/j.mtcomm.2021.102898.

    Article  CAS  Google Scholar 

  36. DECREUS B, DESCHAMPS A, DONNADIEU P, et al. On the role of microstructure in governing fracture behavior of an aluminum-copper-lithium alloy [J]. Materials Science and Engineering A, 2013, 586: 418–427. DOI: https://doi.org/10.1016/j.msea.2013.06.075.

    Article  CAS  Google Scholar 

  37. ZHOU Chang, ZHAN Li-hua, LI He. Improving creep age formability of an Al−Cu−Li alloy by electropulsing [J]. Journal of Alloys and Compounds, 2021, 870: 159482. DOI: https://doi.org/10.1016/j.jallcom.2021.159482.

    Article  CAS  Google Scholar 

  38. BRODUSCH N, TRUDEAU M, MICHAUD P, et al. Contribution of a new generation field-emission scanning electron microscope in the understanding of a 2099 Al−Li alloy [J]. Microscopy and Microanalysis, 2012, 18(6): 1393–1409. DOI: https://doi.org/10.1017/S143192761200150X.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. LEI C, LI H, ZHENG G W, et al. Thermal-mechanical loading sequences related creep aging behaviors of 7050 aluminum alloy [J]. Journal of Alloys and Compounds, 2018, 731: 90–99. DOI: https://doi.org/10.1016/j.jallcom.2017.10.035.

    Article  CAS  Google Scholar 

  40. DESCHAMPS A, FRIBOURG G, BR’ECHET Y, et al. In situ evaluation of dynamic precipitation during plastic straining of an Al−Zn−Mg−Cu alloy [J]. Acta Materialia, 2012, 60(5): 1905–1916. DOI: https://doi.org/10.1016/j.actamat.2012.01.002.

    Article  ADS  CAS  Google Scholar 

  41. PRASAD N E, PRASAD K S, KAMAT S V, et al. Influence of microstructural features on the fracture resistance of aluminium-lithium alloy sheets [J]. Engineering Fracture Mechanics, 1995, 51(1): 87–96. DOI: https://doi.org/10.1016/0013-7944(94)00225-7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by ZHAN Li-hua and XU Yong-qian. ZHAN Li-hua provided the fund supports. LIU Chun-hui and MA Bo-lin conducted the literature review. CHEN Fei analyzed the measured data and edited the draft of manuscript. ZHAN Li-hua, ZENG Quan-qing, HU Zheng-gen, ZHU Wen-li, and YAN Dong-yang edited the manuscript.

Corresponding author

Correspondence to Li-hua Zhan  (湛利华).

Ethics declarations

No potential conflict of interest was reported by the authors.

Additional information

Foundation item: Projects(U22A20190, 52175373, 52005516) supported by the National Natural Science Foundation of China; Project (ZZYJKT2021-03) supported by the State Key Laboratory of High Performance Complex Manufacturing, Central South University, China; Project(2020RC4001) supported by the Science and Technology Innovation Program of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Zhan, Lh., Xu, Yq. et al. Regulation mechanism of aging behavior and mechanical properties of 2195-T34 Al-Li alloy at different stress levels. J. Cent. South Univ. 31, 11–24 (2024). https://doi.org/10.1007/s11771-023-5526-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5526-y

Key words

关键词

Navigation