Skip to main content
Log in

Mechanoluminescence of metal complexes: Progress and applications

金属配合物的机械发光: 进展与应用

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Mechanoluminescence (ML) is a light emission phenomenon caused by mechanical force on a substance. Recently, metal complexes mechanoluminescence materials are attracting widespread attention owing to their distinctive optical emission properties, which create exciting opportunities in various fields, such as stress sensing, anti-counterfeiting, structural health monitoring, medical health monitoring, structure detection and other fields. In this review, we summarized the recent progress of metal complex mechanoluminescence materials, including lanthanide metal complexes and transition metal complexes. In addition, the underlying mechanoluminescence mechanisms, design principles of mechanoluminescence, detailed photophysical behaviors, and their potential applications have been discussed. This review will provide inspiration and guidelines for constructing metal complexes mechanoluminescence materials and expanding their potential applications in stress sensing, structure detection and so on.

摘要

摩擦发光(ML)是由机械力作用在材料上引起的发光现象。近年来, 金属配合物ML 材料因其 独特的光学发射特性而受到广泛关注, 在应力传感、防伪、结构健康监测、医疗健康、结构检测等领 域有着广阔的应用前景。本文综述了近年来具有摩擦发光性质的金属配合物材料的研究进展, 包括镧 系金属配合物和过渡金属配合物。此外, 还讨论了摩擦发光的产生机制、设计原理、光物理性质及其 应用前景。本综述将为构建金属配合物摩擦发光材料以及拓展其在应力传感、结构检测等方面的应用 提供启发和指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. DI Bao-hua, CHEN Yu-lan. Recent progress in organic mechanoluminescent materials [J]. Chinese Chemical Letters, 2018, 29(2): 245–251. DOI: https://doi.org/10.1016/j.cclet.2017.08.043.

    Article  Google Scholar 

  2. SWEETING L M. Triboluminescence with and without air [J]. Chemistry of Materials, 2001, 13(3): 854–870. DOI: https://doi.org/10.1021/cm0006087.

    Article  Google Scholar 

  3. MA Ke-wei, GUI Qing-feng, LIU Ci-hui, et al. Tunable multicolor fluorescence of perovskite-based composites for optical steganography and light-emitting devices [J]. Research, 2022, 2022: 9896548. DOI: https://doi.org/10.34133/2022/9896548.

    Article  Google Scholar 

  4. FAN Peng-fei, LIU Can, LI Qian-ji, et al. Microwave-assisted rapid synthesis of ovalbumin-stabilized gold nanoclusters for picric acid determination [J]. Journal of Central South University, 2023, 30(1): 74–84. DOI: https://doi.org/10.1007/s11771-023-5224-9.

    Article  Google Scholar 

  5. GU Hai-tao, YANG Zheng-hong, FAN Zhen, et al. Real-time in situ visualization of internal relative humidity in fluorescence embedded cement-based materials [J]. Journal of Central South University, 2021, 28(12): 3790–3799. DOI: https://doi.org/10.1007/s11771-021-4666-1.

    Article  Google Scholar 

  6. ZHANG Yong-feng, WANG Zhong-hao, SU Yan, et al. Simple vanilla derivatives for long-lived room-temperature polymer phosphorescence as invisible security inks [J]. Research, 2021, 2021: 8096263. DOI: https://doi.org/10.34133/2021/8096263.

    Article  Google Scholar 

  7. XIAO GUO-wei, ZHOU Bo, FANG Xiao-yu, et al. Room-temperature phosphorescent organic-doped inorganic frameworks showing wide-range and multicolor longpersistent luminescence [J]. Research, 2021, 2021: 9862327. DOI: https://doi.org/10.34133/2021/9862327.

    Article  Google Scholar 

  8. WANG Xiao, NIU Guo-wei, ZHOU Zi-xing, et al. Halogenated thermally activated delayed fluorescence materials for efficient scintillation [J]. Research, 2023, 6: 0090. DOI: https://doi.org/10.34133/research.0090.

    Article  Google Scholar 

  9. ZINK J I. Triboluminescence [J]. Accounts of Chemical Research, 1978, 11(8): 289–295. DOI: https://doi.org/10.1021/ar50128a001.

    Article  MathSciNet  Google Scholar 

  10. SAGE I, BOURHILL G. Triboluminescent materials for structural damage monitoring [J]. Journal of Materials Chemistry, 2001, 11(2): 231–245. DOI: https://doi.org/10.1039/b007029g.

    Article  Google Scholar 

  11. BÜNZLI J C G, WONG K L. Lanthanide mechanoluminescence [J]. Journal of Rare Earths, 2018, 36(1): 1–41. DOI: https://doi.org/10.1016/j.jre.2017.09.005.

    Article  Google Scholar 

  12. SUN Hao-dong, WU Ya-zhang, XIAO Yu-xin, et al. Promoting intense mechanoluminescence by strengthening C-H ⋯ π interactions in thioxanthene derivatives [J]. Dyes and Pigments, 2023, 211: 111054. DOI: https://doi.org/10.1016/j.dyepig.2022.111054.

    Article  Google Scholar 

  13. HAO Fei, WANG Hai-lan, YU Dong-hai, et al. Realizing near-infrared mechanophosphorescence from an organic host/guest system [J]. Journal of Materials Chemistry C, 2023, 11(17): 5725–5730. DOI: https://doi.org/10.1039/D2TC05253A.

    Article  Google Scholar 

  14. SUN Hao-dong, DU Bei-bei, WU Ya-zhang, et al. Interdiscipline between optoelectronic materials and mechanical sensors: Recent advances of organic triboluminescent compounds and their applications in sensing [J]. Journal of Central South University, 2021, 28(12): 3907–3934. DOI: https://doi.org/10.1007/s11771-021-4888-2.

    Article  Google Scholar 

  15. JHA P, CHANDRA B P. Survey of the literature on mechanoluminescence from 1605 to 2013 [J]. Luminescence: the Journal of Biological and Chemical Luminescence, 2014, 29(8): 977–993. DOI: https://doi.org/10.1002/bio.2647.

    Article  Google Scholar 

  16. WANG Nan-nan, PU Ming-jie, MA Zhi-dong, et al. Control of triboelectricity by mechanoluminescence in ZnS/Mn-containing polymer films [J]. Nano Energy, 2021, 90: 106646. DOI: https://doi.org/10.1016/j.nanoen.2021.106646.[

    Article  Google Scholar 

  17. LIU Ming-li, WU Qi, SHI Hui-fang, et al. Progress of research on organic/organometallic mechanoluminescent materials [J]. Acta Chimica Sinica, 2018, 76(4): 246–258. DOI: https://doi.org/10.6023/a17110504. (in Chinese)

    Article  Google Scholar 

  18. CHEN Xiao-feng, LIU Shu-hua, DUAN Chun-yin, et al. Synthesis, crystal structure and triboluminescence spectrum of 1, 4-dimethylpyridinium tetrakis (2-thenoyltrifluoroacetonato)europate [J]. Polyhedron, 1998, 17(11–12): 1883–1889. DOI: https://doi.org/10.1016/S0277-5387(97)00519-6.

    Article  Google Scholar 

  19. CHEN Xiao-feng, ZHU Xu-hui, XU Yao-hua, et al. Triboluminescence and crystal structures of non-ionic europium complexes [J]. Journal of Materials Chemistry, 1999, 9(11): 2919–2922. DOI: https://doi.org/10.1039/A904411F.

    Article  Google Scholar 

  20. HURT C R, MCAVOY N, BJORKLUND S, et al. High intensity triboluminescence in europium tetrakis (dibenzoylmethide) -triethylammonium [J]. Nature, 1966, 212(5058): 179–180. DOI: https://doi.org/10.1038/212179b0.

    Article  Google Scholar 

  21. BIJU S, GOPAKUMAR N, BÜNZLI J C G, et al. Brilliant photoluminescence and triboluminescence from ternary complexes of Dy(III) and Tb(III) with 3-phenyl-4-propanoyl-5-isoxazolonate and a bidentate phosphine oxide coligand [J]. Inorganic Chemistry, 2013, 52(15): 8750–8758. DOI: https://doi.org/10.1021/ic400913f.

    Article  Google Scholar 

  22. GOODGAME D M L, COTTON F A. Phosphine oxide complexes. Part V. Tetrahedral complexes of manganese(II) containing triphenylphosphine oxide, and triphenylarsine oxide as ligands [J]. Journal of the Chemical Society (Resumed), 1961: 3735–3741. DOI: https://doi.org/10.1039/jr9610003735.

  23. KNOTTER D M, VAN MAANEN H L, GROVE D M, et al. Synthesis and properties of trimeric ortho-chelated (arenethiolato)copper(I) complexes [J]. Inorganic Chemistry, 1991, 30(17): 3309–3317. DOI: https://doi.org/10.1021/ic00017a017.

    Article  Google Scholar 

  24. DE BETTENCOURT-DIAS A. Lanthanide-based emitting materials in light-emitting diodes [J]. Dalton Transactions, 2007(22): 2229–2241. DOI: https://doi.org/10.1039/B702341C.

  25. HASEGAWA Y, WADA Yu-ji, YANAGIDA S. Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2004, 5(3): 183–202. DOI: https://doi.org/10.1016/j.jphotochemrev.2004.10.003.

    Article  Google Scholar 

  26. LATVA M, TAKALO H, MUKKALA V M, et al. Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield [J]. Journal of Luminescence, 1997, 75(2): 149–169. DOI: https://doi.org/10.1016/S0022-2313(97)00113-0.

    Article  Google Scholar 

  27. XU Shi-dang, LIU Ting-ting, MU Ying-xiao, et al. An organic molecule with asymmetric structure exhibiting aggregation-induced emission, delayed fluorescence, and mechanoluminescence [J]. Angewandte Chemie International Edition, 2015, 54(3): 874–878. DOI: https://doi.org/10.1002/anie.201409767.

    Article  Google Scholar 

  28. CHANDRA B P, CHANDRA V K, JHA P, et al. Fractomechanoluminescence and mechanics of fracture of solids [J]. Journal of Luminescence, 2012, 132(8): 2012–2022. DOI: https://doi.org/10.1016/j.jlumin.2012.03.001.

    Article  Google Scholar 

  29. ZINK J I. Squeezing light out of crystals: Triboluminescence [J]. Naturwissenschaften, 1981, 68(10): 507–512. DOI: https://doi.org/10.1007/BF00365374.

    Article  Google Scholar 

  30. WONG H Y, LO W S, CHAN W T K, et al. Mechanistic investigation of inducing triboluminescence in lanthanide (III) β-diketonate complexes [J]. Inorganic Chemistry, 2017, 56(9): 5135–5140. DOI: https://doi.org/10.1021/acs.inorgchem.7b00273.

    Article  Google Scholar 

  31. XIE Yu-jun, LI Zhen. Triboluminescence: Recalling interest and new aspects [J]. Chem, 2018, 4(5): 943–971. DOI: https://doi.org/10.1016/j.chempr.2018.01.001.

    Article  Google Scholar 

  32. RHEINGOLD A L, KING W. Crystal structures of three brilliantly triboluminescent centrosymmetric lanthanide complexes: Piperidinium tetrakis(benzoylacetonato)europate, hexakis(antipyrine)terbium triiodide, and hexaaquadichloroterbium chloride [J]. Inorganic Chemistry, 1989, 28(9): 1715–1719. DOI: https://doi.org/10.1021/ic00308a025.

    Article  Google Scholar 

  33. SWEETING L M, RHEINGOLD A L. Crystal disorder and triboluminescence: Triethylammonium tetrakis (dibenzoylmethanato)europate [J]. Journal of the American Chemical Society, 1987, 109(9): 2652–2658. DOI: https://doi.org/10.1021/ja00243a017.

    Article  Google Scholar 

  34. CHEN Jun, ZHANG Qing, ZHENG Fa-kun, et al. Intense photo- and tribo-luminescence of three tetrahedral manganese (ii) dihalides with chelating bidentate phosphine oxide ligand [J]. Dalton Transactions, 2015, 44(7): 3289–3294. DOI: https://doi.org/10.1039/C4DT03694H.

    Article  Google Scholar 

  35. OLAWALE D O, OKOLI O O I, FONTENOT R S, et al. Triboluminescence: theory, synthesis, and application [M]. Switzerland: Springer International Publishing, 2016. DOI: https://doi.org/10.1007/978-3-319-38842-7.

    Book  Google Scholar 

  36. VIJ D R. Luminescence of solids [M]. New York: Springer Science+Business Media, 1998. DOI: https://doi.org/10.1007/978-1-4615-5361-8.

    Book  Google Scholar 

  37. CHANDRA B P, CHANDRA V K, JHA P. Models for intrinsic and extrinsic fracto-mechanoluminescence of solids [J]. Journal of Luminescence, 2013, 135: 139–153. DOI: https://doi.org/10.1016/j.jlumin.2012.10.009.

    Article  Google Scholar 

  38. CHANDRA B P, MAHOBIA S K, JHA P, et al. Transient behaviour of the mechanoluminescence induced by impulsive deformation of fluorescent and phosphorescent crystals [J]. Journal of Luminescence, 2008, 128(12): 2038–2047. DOI: https://doi.org/10.1016/j.jlumin.2008.07.003.

    Article  Google Scholar 

  39. CHANDRA B P, RATHORE A S. Classification of mechanoluminescence [J]. Crystal Research and Technology, 1995, 30(7): 885–896. DOI: https://doi.org/10.1002/crat.2170300702.

    Article  Google Scholar 

  40. ZHUANG Yi-xi, XIE Rong-jun. Mechanoluminescence rebrightening the prospects of stress sensing: A review [J]. Advanced Materials, 2021, 33(50): e2005925. DOI: https://doi.org/10.1002/adma.202005925.

    Article  Google Scholar 

  41. HASEGAWA Y, KITAGAWA Y, NAKANISHI T. Effective photosensitized, electrosensitized, and mechanosensitized luminescence of lanthanide complexes [J]. NPG Asia Materials, 2018, 10(4): 52–70. DOI: https://doi.org/10.1038/s41427-018-0012-y.

    Article  Google Scholar 

  42. YANG Zhi-yong, CHI Zhi-he, MAO Zhu, et al. Recent advances in mechano-responsive luminescence of tetraphenylethylene derivatives with aggregation-induced emission properties [J]. Materials Chemistry Frontiers, 2018, 2(5): 861–890. DOI: https://doi.org/10.1039/C8QM00062J.

    Article  Google Scholar 

  43. HIRAI Y, KOTANI A, SAKAUE H, et al. Lifetimes of lanthanide(III) triboluminescence excited by aerodynamic shock waves [J]. The Journal of Physical Chemistry C, 2019, 123(44): 27251–27256. DOI: https://doi.org/10.1021/acs.jpcc.9b08349.

    Article  Google Scholar 

  44. TAKADA N, SUGIYAMA J I, KATOH R, et al. Mechanoluminescent properties of europium complexes [J]. Synthetic Metals, 1997, 91(1–3): 351–354. DOI: https://doi.org/10.1016/S0379-6779(98)80058-1.

    Article  Google Scholar 

  45. CHEN Xiao-feng, DUAN Chun-yin, ZHU Xu-hui, et al. Triboluminescence and crystal structures of europium(III) complexes [J]. Materials Chemistry and Physics, 2001, 72(1): 11–15. DOI: https://doi.org/10.1016/S0254-0584(01)00299-1.

    Article  Google Scholar 

  46. LI Xi-li, ZHENG You-xuan, ZUO Jing-lin, et al. Synthesis, crystal structures and triboluminescence of a pair of Eu(III)-based enantiomers [J]. Polyhedron, 2007, 26(18): 5257–5262. DOI: https://doi.org/10.1016/j.poly.2007.07.047.

    Article  Google Scholar 

  47. HASEGAWA Y, HIEDA R, MIYATA K, et al. Brilliant triboluminescence of a lanthanide coordination polymer with low-vibrational-frequency and non-centrosymmetric structural networks [J]. European Journal of Inorganic Chemistry, 2011, 2011(32): 4978–4984. DOI: https://doi.org/10.1002/ejic.201100688.

    Article  Google Scholar 

  48. RAUSCH J, LORENZ V, HRIB C G, et al. Heterometallic europium disiloxanediolates: Synthesis, structural diversity, and photoluminescence properties [J]. Inorganic Chemistry, 2014, 53(21): 11662–11674. DOI: https://doi.org/10.1021/ic501837x.

    Article  Google Scholar 

  49. MIKHALYOVA E A, YAKOVENKO A V, ZELLER M, et al. Manifestation of π - π stacking interactions in luminescence properties and energy transfer in aromatically-derived Tb, Eu and Gd tris(pyrazolyl)borate complexes [J]. Inorganic Chemistry, 2015, 54(7): 3125–3133. DOI: https://doi.org/10.1021/ic502120g.

    Article  Google Scholar 

  50. BRYLEVA Y A, ARTEM’EV A V, GLINSKAYA L A, et al. Bright photo- and triboluminescence of centrosymmetric Eu(iii) and Tb(iii) complexes with phosphine oxides containing azaheterocycles [J]. New Journal of Chemistry, 2021, 45(31): 13869–13876. DOI: https://doi.org/10.1039/D1NJ02441H.

    Article  Google Scholar 

  51. TAKADA N, SUGIYAMA J I, MINAMI N, et al. Intense mechanoluminescence from europium tris(2-thenoyltrifluoroacetone) phenanthroline [J]. Molecular Crystals and Liquid Crystals Science and Technology Section A Molecular Crystals and Liquid Crystals, 1997, 295(1): 71–74. DOI: https://doi.org/10.1080/10587259708042799.

    Article  Google Scholar 

  52. BUKVETSKII B V, PETROCHENKOVA N V, MIROCHNIK A G. Crystal structure and triboluminescence of europium(III) tetrakis-thenoyl trifluoroacetonate with outer-sphere organic cation [J]. Structural Chemistry, 2023, 34(5): 1707–1713. DOI: https://doi.org/10.1007/s11224-022-02096-7.

    Article  Google Scholar 

  53. BUKVETSKII B V, KALINOVSKAYA I V. Crystal structure, luminescence, and triboluminescence of the complex[Eu2(quin)42H2O2Dipy]2(NO3)2H2O [J]. Optics and Spectroscopy, 2019, 127(3): 446–453. DOI: https://doi.org/10.1134/s0030400x19090054.

    Article  Google Scholar 

  54. BUKVETSKII B V, MIROCHNIK A G, ZHIKHAREVA P A, et al. Crystal structure and triboluminescence of centrosymmetric complex[Eu(NO3)3(HMPA)3 [J]. Journal of Structural Chemistry, 2010, 51(6): 1164–1169. DOI: https://doi.org/10.1007/s10947-010-0176-y.

    Article  Google Scholar 

  55. BUKVETSKII B V, PETROCHENKOVA N V, MIROCHNIK A G. Crystal structure and triboluminescence of tetraethylammonium tetrakis(thenoyltrifluoroacetonato) europium [J]. Russian Chemical Bulletin, 2015, 64(10): 2427–2432. DOI: https://doi.org/10.1007/s11172-015-1173-2.

    Article  Google Scholar 

  56. BUKVETSKII B V, KALINOVSKAYA I V. Triboluminescence and crystal structure of the complex[Eu(MBA)3Dipy]2(HMBA) [J]. Luminescence, 2023. DOI: https://doi.org/10.1002/bio.4617.

  57. BUKVETSKII B V, MIROCHNIK A G, ZHIKHAREVA P A, et al. Crystal structure and triboluminescence of the [Eu(TTA)2(NO3) (TPPO)2]complex [J]. Journal of Structural Chemistry, 2006, 47(3): 575–580. DOI: https://doi.org/10.1007/s10947-006-0340-6.

    Article  Google Scholar 

  58. BUKVETSKII B V, KALINOVSKAYA I V. Crystal structure, luminescence and triboluminescence of the complex[Eu(NO3)23hmpa]NO3-HQuin [J]. Journal of Fluorescence, 2017, 27(3): 773–779. DOI: https://doi.org/10.1007/s10895-016-2009-7.

    Article  Google Scholar 

  59. BUKVETSKII B V, MIROCHNIK A G, ZHIKHAREVA P A. Triboluminescence and crystal structure of the complex[Eu (NO3)3(HMPA)3]: Role of cleavage planes [J]. Luminescence, 2017, 32(3): 341–347. DOI: https://doi.org/10.1002/bio.3184.

    Article  Google Scholar 

  60. ELISEEVA S V, PLESHKOV D N, LYSSENKO K A, et al. Highly luminescent and triboluminescent coordination polymers assembled from lanthanide β-diketonates and aromatic bidentate O-donor ligands [J]. Inorganic Chemistry, 2010, 49(20): 9300–9311. DOI: https://doi.org/10.1021/ic100974e.

    Article  Google Scholar 

  61. HIRAI Y, FERREIRA DA ROSA P P, NAKANISHI T, et al. Structural manipulation of triboluminescent lanthanide coordination polymers by side-group alteration [J]. Inorganic Chemistry, 2018, 57(23): 14653–14659. DOI: https://doi.org/10.1021/acs.inorgchem.8b02367.

    Article  Google Scholar 

  62. HASEGAWA Y, TATENO S, YAMAMOTO M, et al. Effective photo- and triboluminescent europium(III) coordination polymers with rigid triangular spacer ligands [J]. Chemistry - A European Journal, 2017, 23(11): 2666–2672. DOI: https://doi.org/10.1002/chem.201605054.

    Article  Google Scholar 

  63. HIRAI Y, NAKANISHI T, KITAGAWA Y, et al. Triboluminescence of lanthanide coordination polymers with face-to-face arranged substituents [J]. Angewandte Chemie International Edition, 2017, 56(25): 7171–7175. DOI: https://doi.org/10.1002/anie.201703638.

    Article  Google Scholar 

  64. HIRAI Y, BAAREN S V, OHMURA T, et al. Bright lanthanideIII triboluminescence despite low photoluminescence, and dual triboluminescence and mechano-responsive photoluminescence [J]. Advanced Optical Materials, 2023, 11(9): 2203139. DOI: https://doi.org/10.1002/adom.202203139.

    Article  Google Scholar 

  65. FONTENOT R S, HOLLERMAN W A, BHAT K N, et al. Synthesis and characterization of highly triboluminescent doped europium tetrakis compounds [J]. Journal of Luminescence, 2012, 132(7): 1812–1818. DOI: https://doi.org/10.1016/j.jlumin.2012.02.027.

    Article  Google Scholar 

  66. FONTENOT R S, HOLLERMAN W A, BHAT K N, et al. Incorporating strongly triboluminescent europium dibenzoylmethide triethylammonium into simple polymers [J]. Polymer Journal, 2014, 46(2): 111–116. DOI: https://doi.org/10.1038/pj.2013.78.

    Article  Google Scholar 

  67. BUKVETSKII B V, MIROCHNIK A G, SHISHOV A S. Triboluminescence and crystal structure of centrosymmetric complex Tb(AcAc)3Phen [J]. Journal of Luminescence, 2018, 195: 44–48. DOI: https://doi.org/10.1016/j.jlumin.2017.10.074.

    Article  Google Scholar 

  68. BUKVETSKII B V, SHISHOV A S, MIROCHNIK A G. Triboluminescence and crystal structure of the centrosymmetric complex[Tb(NO3)2(Acac)(Phen)2] · H2O [J]. Luminescence, 2016, 31(7): 1329–1334. DOI: https://doi.org/10.1002/bio.3110.

    Article  Google Scholar 

  69. MIROCHNIK A G, BUKVETSKII B V, ZHIKHAREVA P A, et al. Crystal structure and triboluminescence of the [Tb(BTFA)2(NO3) (TPPO)2]complex [J]. Russian Journal of Inorganic Chemistry, 2006, 51(5): 737–742. DOI: https://doi.org/10.1134/s003602360605010x.

    Article  Google Scholar 

  70. BUKVETSKII B V, SHISHOV A S, MIROCHNIK A G. Crystal structures of three centrosymmetric TbAIII complexes. Structural model for triboluminescence [J]. Russian Chemical Bulletin, 2023, 72(6): 1307–1321. DOI: https://doi.org/10.1007/s11172-023-3906-y.

    Article  Google Scholar 

  71. AKERBOOM S, MEIJER M S, SIEGLER M A, et al. Structure, photo- and triboluminescence of the lanthanoid dibenzoylmethanates: HNEt3[ln(dbm)4 [J]. Journal of Luminescence, 2014, 145: 278–282. DOI: https://doi.org/10.1016/j.jlumin.2013.07.065.

    Article  Google Scholar 

  72. BUKVETSKII B V, MIROCHNIK A G, ZHIKHAREVA P A. Structural model for intrinsic mechanoluminescence of Sm(III) complex [J]. Inorganica Chimica Acta, 2018, 483: 565–570. DOI: https://doi.org/10.1016/j.ica.2018.09.010.

    Article  Google Scholar 

  73. CUI Ming-hui, WANG Ai-ling, GAO Cong-li, et al. Two homochiral EuIII and SmIII enantiomeric pairs showing circularly polarized luminescence, photoluminescence and triboluminescence [J]. Dalton Transactions, 2021, 50(3): 1007–1018. DOI: https://doi.org/10.1039/D0DT03576A.

    Article  Google Scholar 

  74. BALSAMY S, NATARAJAN P, VEDALAKSHMI R, et al. Triboluminescence and vapor-induced phase transitions in the solids of methyltriphenylphosphonium tetrahalomanganate(II) complexes [J]. Inorganic Chemistry, 2014, 53(12): 6054–6059. DOI: https://doi.org/10.1021/ic500400y.

    Article  Google Scholar 

  75. ARTEM’EV A V, DAVYDOVA M P, RAKHMANOVA M I, et al. A family of Mn(ii) complexes exhibiting strong photo- and triboluminescence as well as polymorphic luminescence [J]. Inorganic Chemistry Frontiers, 2021, 8(15): 3767–3774. DOI: https://doi.org/10.1039/D1QI00556A.

    Article  Google Scholar 

  76. MARCHETTI F, DI NICOLA C, PETTINARI R, et al. Synthesis of a photoluminescent and triboluminescent copper (I) compound: An experiment for an advanced inorganic chemistry laboratory [J]. Journal of Chemical Education, 2012, 89(5): 652–655. DOI: https://doi.org/10.1021/ed2001494.

    Article  Google Scholar 

  77. İNCEL A, VARLIKLI C, MCMILLEN C D, et al. Triboluminescent electrospun mats with blue-green emission under mechanical force [J]. The Journal of Physical Chemistry C, 2017, 121(21): 11709–11716. DOI: https://doi.org/10.1021/acs.jpcc.7b02875.

    Article  Google Scholar 

  78. KARIMATA A, PATIL P H, KHASKIN E, et al. Highly sensitive mechano-controlled luminescence in polymer films modified by dynamic CuI-based cross-linkers [J]. Chemical Communications, 2020, 56(1): 50–53. DOI: https://doi.org/10.1039/C9CC08354E.

    Article  Google Scholar 

  79. KARIMATA A, PATIL P H, FAYZULLIN R R, et al. Triboluminescence of a new family of CuI-NHC complexes in crystalline solid and in amorphous polymer films [J]. Chemical Science, 2020, 11(39): 10814–10820. DOI: https://doi.org/10.1039/D0SC04442C.

    Article  Google Scholar 

  80. SHARIPOV G L, TUKHBATULLIN A A. Triboluminescence of tris(2, 2′-bipyridyl)ruthenium(II) dichloride hexahydrate [J]. Journal of Luminescence, 2019, 215: 116691. DOI: https://doi.org/10.1016/j.jlumin.2019.116691.

    Article  Google Scholar 

  81. HSU C W, LY K T, LEE Wei-kai, et al. Triboluminescence and metal phosphor for organic light-emitting diodes: Functional Pt(II) complexes with both 2-pyridylimidazol-2-ylidene and bipyrazolate chelates [J]. ACS Applied Materials & Interfaces, 2016, 8(49): 33888–33898. DOI: https://doi.org/10.1021/acsami.6b12707.

    Article  Google Scholar 

  82. HONG E, JANG H, KIM Y, et al. Mechano- and electroluminescence of a dissymmetric hafnium carborane complex [J]. Advanced Materials, 2001, 13(14): 1094–1096. DOI: https://doi.org/10.1002/1521-4095(200107)13:14<1094:aid-adma1094>3.0.co;2-u.

    Article  Google Scholar 

  83. SHIN C H, HAN Y, LEE M H, et al. Group 4 ansa-metallocenes derived from o-carborane and their luminescent properties [J]. Journal of Organometallic Chemistry, 2009, 694(11): 1623–1631. DOI: https://doi.org/10.1016/j.jorganchem.2008.12.062.

    Article  Google Scholar 

  84. TUKHBATULLIN A A, KOVYAZIN P V, SHARIPOV G L, et al. Photoluminescence and mechanoluminescence of solid-state zirconocene dichlorides [J]. Luminescence, 2021, 36(4): 943–950. DOI: https://doi.org/10.1002/bio.4020.

    Article  Google Scholar 

  85. TERASAKI N, YAMADA H, XU Chao-nan. Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source [J]. Catalysis Today, 2013, 201: 203–208. DOI: https://doi.org/10.1016/j.cattod.2012.04.040.

    Article  Google Scholar 

  86. DING Yi-cong, SO B, CAO Jiang-kun, et al. Ultrasound-induced mechanoluminescence and optical thermometry toward stimulus-responsive materials with simultaneous trigger response and read-out functions [J]. Advanced Science, 2022, 9(23): 2201631. DOI: https://doi.org/10.1002/advs.202201631.

    Article  Google Scholar 

  87. TUKHBATULLIN A A, SHARIPOV G L. Mechanoluminescence of samarium(III) sulfate crystals activated by ultrasound [J]. Optical Materials, 2023, 143: 114253. DOI: https://doi.org/10.1016/j.optmat.2023.114253.

    Article  Google Scholar 

  88. WANG Xian-di, PENG Deng-feng, HUANG Bo-long, et al. Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications [J]. Nano Energy, 2019, 55: 389–400. DOI: https://doi.org/10.1016/j.nanoen.2018.11.014.

    Article  Google Scholar 

  89. QIAN Xin, CAI Zhe-ren, SU Meng, et al. Printable skin-driven mechanoluminescence devices via nanodoped matrix modification [J]. Advanced Materials, 2018, 30(25): e1800291. DOI: https://doi.org/10.1002/adma.201800291.

    Article  Google Scholar 

  90. JIANG Yan-jiao, WANG Fu, ZHOU Hui, et al. Optimization of strontium aluminate-based mechanoluminescence materials for occlusal examination of artificial tooth [J]. Materials Science and Engineering C, 2018, 92: 374–380. DOI: https://doi.org/10.1016/j.msec.2018.06.056.

    Article  Google Scholar 

  91. KIM Y, KIM J S, KIM G W. A novel frequency selectivity approach based on travelling wave propagation in mechanoluminescence basilar membrane for artificial cochlea [J]. Scientific Reports, 2018, 8: 12023. DOI: https://doi.org/10.1038/s41598-018-30633-0.

    Article  Google Scholar 

  92. WANG Xian-di, ZHANG Han-lu, YU Ruo-meng, et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process [J]. Advanced Materials, 2015, 27(14): 2324–2331. DOI: https://doi.org/10.1002/adma.201405826.

    Article  Google Scholar 

  93. ZHANG Jun-cheng, PAN Cong, ZHU Yi-fei, et al. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting [J]. Advanced Materials, 2018, 30(49): e1804644. DOI: https://doi.org/10.1002/adma.201804644.

    Article  Google Scholar 

  94. KLEIN C, ENGLER R H, HENNE U, et al. Application of pressure-sensitive paint for determination of the pressure field and calculation of the forces and moments of models in a wind tunnel [J]. Experiments in Fluids, 2005, 39(2): 475–483. DOI: https://doi.org/10.1007/s00348-005-1010-8.

    Article  Google Scholar 

  95. PULLIAM E, HOOVER G, TIPARTI D, et al. Development of self-powered strain sensor using mechano-luminescent ZnS: Cu and mechano-optoelectronic P3HT [C]//SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. Proc SPIE 10168, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017. Portland, Oregon, USA, 2017, 10168: 88–102. DOI: https://doi.org/10.1117/12.2260318.

  96. TERASAKI N, XU Chao-nan. Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor [J]. IEEE Sensors Journal, 2013, 13(10): 3999–4004. DOI: https://doi.org/10.1109/JSEN.2013.2264665.

    Article  Google Scholar 

  97. FUJIO Y, XU Chao-nan, TERASAWA Y, et al. Sheet sensor using SrAl2O4: Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel [J]. International Journal of Hydrogen Energy, 2016, 41(2): 1333–1340. DOI: https://doi.org/10.1016/j.ijhydene.2015.10.073.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YU Tao and UBBA Eethamukkala provided the concept and edited the draft of the manuscript. WANG Hai-lan, WEI Xiao-yu and WANG Juan conducted the first draft of the manuscript. SUN Hao-dong and HUANG Rong-juan helped to revise the manuscript. WANG Hai-lan, WEI Xiao-yu and WANG Juan contributed equally to this manuscript.

Corresponding authors

Correspondence to Eethamukkala Ubba or Tao Yu  (于涛).

Ethics declarations

WANG Hai-lan, WEI Xiao-yu, WANG Juan, SUN Hao-dong, HUANG Rong-juan, UBBA Eethamukkala, and YU Tao declare that they have no conflict of interest.

Additional information

Foundation item: Projects(51703253, 52103230, 62275217) supported by the National Natural Science Foundation of China; Project supported by the Fundamental Research Funds for the Central Universities, China; Project(2020GXLH-Z-010) supported by the Key Research and Development Program of Shaanxi Province, China; Project(cstc2020jcyj-msxmX0931) supported by Chongqing Science and Technology Fund, China; Projects(2020A1515110603, 2021A1515010633) supported by Guangdong Basic and Applied Basic Research Foundation, China; Projects (202003N4059, 202003N4060) supported by Ningbo Natural Science Foundation, China; Project(2020Z073053007) supported by Aerospace Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hl., Wei, Xy., Wang, J. et al. Mechanoluminescence of metal complexes: Progress and applications. J. Cent. South Univ. 30, 3897–3923 (2023). https://doi.org/10.1007/s11771-023-5520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5520-4

Key words

关键词

Navigation