Skip to main content
Log in

Dual-loading strategy to construct Au-BiOBr-TiO2 photocatalysts for fast and efficient degradation of xanthates under visible light

双负载策略构建Au-BiOBr-TiO2光催化剂在可见光下快速高效降解黄药

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

With the advancement of mining operations, xanthate as an essential flotation reagent is unavoidably released into natural water bodies through flotation effluent. To protect the surrounding environment of mines, Au-BiOBr-TiO2 (AuBT) ternary composites were constructed and utilized as an optimal photocatalyst in the degradation process of xanthates. AuBT with high purity was prepared by the integrated techniques of hydrothermal, water bath precipitation, and photodeposition. BiOBr nanosheets and Au nanoparticles were uniformly distributed on the surface of TiO2 particles in the composites. In simulated mineral flotation effluents, AuBT showed excellent degradation performance in the catalytic oxidation of 20 mg/L xanthate under visible light irradiation, achieving 95.2% removal rate in 20 min. The experiments and characterization results revealed that the dual-loading strategy to construct AuBT photocatalysts effectively decreased the band gap and broadened the photoresponse range of pristine TiO2, which was significant for the improvement of the photocatalytic activity. DFT calculations demonstrated that partial electrons were transferred around the sodium ethyl xanthate (SEX) molecule and the accumulated charge contributed to the oxidation process. Experimental results of free radical scavenging indicate that the main active species in the reaction system are photogenerated holes (h+), followed by superoxide radicals (•O2). This work indicates that AuBT composites can be used as an efficient photocatalyst to completely degrade various types of xanthates under visible light, which exhibits great potential in flotation wastewater treatment.

摘要

浮选废水中残留的黄药会严重影响矿区周围生态环境。为了实现对黄药的高效降解, 通过水热 法、水浴沉淀法和光沉积法制备的Au-BiOBr-TiO2(AuBT)三元复合光催化剂对废水进行处理是一种 有效手段。在模拟降解矿物浮选废水实验中, AuBT 表现出卓越的光催化降解性能。实验结果表明, 0.2 g/L 的AUBT 光催化剂在20 min 可见光照射下对初始浓度为20 mg/L 黄药的光催化去除率可达到 95.20%。机理检测表明, AuBT有效降低了带隙并扩大光响应范围, 提高了材料的光催化活性。DFT 计算表明部分电子向乙基黄药(SEX)分子转移, 而这有助于激发光催化过程。自由基清除实验表明反 应体系中的主要活性物种是光生空穴(h+), 其次是超氧自由基(•O-2)。作为高效的光催化剂, AuBT在可 见光下可降解各种类型的黄药, 在浮选废水处理环节体现了巨大的潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. JIA Yun, ZHANG Yu, ZHANG Xuan, et al. Novel CdS/PANI/MWCNTs photocatalysts for photocatalytic degradation of xanthate in wastewater [J]. Separation and Purification Technology, 2023, 309: 123022. DOI: https://doi.org/10.1016/j.seppur.2022.123022.

    Article  Google Scholar 

  2. ZHOU Peng-fei, SHEN Yan-bai, ZHAO Si-kai, et al. Synthesis of clinoptilolite-supported BiOCl/TiO2 heterojunction nanocomposites with highly-enhanced photocatalytic activity for the complete degradation of xanthates under visible light [J]. Chemical Engineering Journal, 2021, 407: 126697. DOI: https://doi.org/10.1016/j.cej.2020.126697.

    Article  Google Scholar 

  3. AMROLLAHI A, MASSINAEI M, ZERAATKAR M A. Removal of the residual xanthate from flotation plant tailings using bentonite modified by magnetic nano-particles [J]. Minerals Engineering, 2019, 134: 142–155. DOI: https://doi.org/10.1016/j.mineng.2019.01.031.

    Article  Google Scholar 

  4. JIANG Man, ZHANG Ming-hui, WANG Long-zhen, et al. Photocatalytic degradation of xanthate in flotation plant tailings by TiO2/graphene nanocomposites [J]. Chemical Engineering Journal, 2022, 431: 134104. DOI: https://doi.org/10.1016/j.cej.2021.134104.

    Article  Google Scholar 

  5. TAN Ye, CHEN Ting, ZHENG Shui-lin, et al. Adsorptive and photocatalytic behaviour of PANI/TiO2/metakaolin composites for the removal of xanthate from aqueous solution [J]. Minerals Engineering, 2021, 171: 107129. DOI: https://doi.org/10.1016/j.mineng.2021.107129.

    Article  Google Scholar 

  6. ZHANG Ming-hui, HAN Ning, FEI Ya-wen, et al. TiO2/g-C3N4 photocatalyst for the purification of potassium butyl xanthate in mineral processing wastewater [J]. Journal of Environmental Management, 2021, 297: 113311. DOI: https://doi.org/10.1016/j.jenvman.2021.113311.

    Article  Google Scholar 

  7. CHEN Xing-hua, HU Yue-hua, PENG Hong, et al. Degradation of ethyl xanthate in flotation residues by hydrogen peroxide [J]. Journal of Central South University, 2015, 22(2): 495–501. DOI: https://doi.org/10.1007/s11771-015-2548-0.

    Article  Google Scholar 

  8. SHEN Ming-wei, ZHANG Guo-qing, LIU Jia-you, et al. Visible-light-driven photodegradation of xanthate in a continuous fixed-bed photoreactor: Experimental study and modeling [J]. Chemical Engineering Journal, 2023, 461: 141833. DOI: https://doi.org/10.1016/j.cej.2023.141833.

    Article  Google Scholar 

  9. LI Meng-ke, ZHONG Hui, HE Zhi-guo, et al. Degradation of various thiol collectors in simulated and real mineral processing wastewater of sulfide ore in heterogeneous modified manganese slag/PMS system [J]. Chemical Engineering Journal, 2021, 413: 127478. DOI: https://doi.org/10.1016/j.cej.2020.127478.

    Article  Google Scholar 

  10. YUAN Fei, ZHENG Yu-fei, GAO Deng-zheng, et al. Facile assembly and enhanced visible-light-driven photocatalytic activity of S-scheme BiOBr/g-C3N4 heterojunction for degrading xanthate in wastewater [J]. Journal of Molecular Liquids, 2022, 366: 120279. DOI: https://doi.org/10.1016/j.molliq.2022.120279.

    Article  Google Scholar 

  11. GARCÍA-LEIVA B, TEIXEIRA L A C, TOREM M L. Degradation of xanthate in waters by hydrogen peroxide, Fenton and simulated solar photo-Fenton processes [J]. Journal of Materials Research and Technology, 2019, 8(6): 5698–5706. DOI: https://doi.org/10.1016/j.jmrt.2019.09.037.

    Article  Google Scholar 

  12. YANG Shu-zhen, SUN Hui-na, SU Sheng-peng, et al. Fabrication, characterizations and performance of a high-efficiency micro-electrolysis filler for isobutyl xanthate (IBX) degradation [J]. Journal of Hazardous Materials, 2021, 403: 123640. DOI: https://doi.org/10.1016/j.jhazmat.2020.123640.

    Article  Google Scholar 

  13. FANG Li-mei, ZENG Ying, EKHOLM M, et al. Field controllable electronic properties of MnPSe3/WS2 heterojunction for photocatalysis [J]. Journal of Central South University, 2021, 28(12): 3728–3736. DOI: https://doi.org/10.1007/s11771-021-4851-2.

    Article  Google Scholar 

  14. ZHU Jian-fei, XIAO Qi. Meso-macroporous Fe-doped CuO: Synthesis, characterization, and structurally enhanced adsorption and visible-light photocatalytic activity [J]. Journal of Central South University, 2015, 22(11): 4105–4111. DOI: https://doi.org/10.1007/s11771-015-2956-1.

    Article  Google Scholar 

  15. ZOUHEIR M, TANJI K, NAVIO J A, et al. Effective photocatalytic conversion of formic acid using iron, copper and sulphate doped TiO2 [J]. Journal of Central South University, 2022, 29(11): 3592–3607. DOI: https://doi.org/10.1007/s11771-022-5172-9.

    Article  Google Scholar 

  16. YANG Ting, HU Xin-yu, WANG Jun-tao, et al. Interfacial coupling effects in g-C3N4/InxSb2xS3 heterojunction for enhanced photocatalytic activity under visible light [J]. Journal of Central South University, 2022, 29(5): 1447–1462. DOI: https://doi.org/10.1007/s11771-022-5039-0.

    Article  Google Scholar 

  17. YUAN Hai-bo, OUYANG Yu-xin, WANG Liang-bing. Solgel synthesis of metal ions doped TiO2 catalyst with efficient photodegradation of dye pollutant [J]. Journal of Central South University, 2023, 30(4): 1086–1094. DOI: https://doi.org/10.1007/s11771-023-5241-8.

    Article  Google Scholar 

  18. TONG Hai-xia, CHAI Li-yuan, ZHANG Xin-rui. Spectra analysis and O2 evolution for TiO2 photocatalyst compounded with indirect transition semiconductors [J]. Journal of Central South University, 2012, 19(9): 2425–2433. DOI: https://doi.org/10.1007/s11771-012-1292-y.

    Article  Google Scholar 

  19. MENG Ai-yun, CHENG Bei, TAN Hai-yan, et al. TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity [J]. Applied Catalysis B: Environmental, 2021, 289: 120039. DOI: https://doi.org/10.1016/j.apcatb.2021.120039.

    Article  Google Scholar 

  20. HE Bo-wen, LUO Cheng, WANG Zhong-liao, et al. Synergistic enhancement of solar H2O2 and HCOOH production over TiO2 by dual co-catalyst loading in a triphase system [J]. Applied Catalysis B: Environmental, 2023, 323: 122200. DOI: https://doi.org/10.1016/j.apcatb.2022.122200.

    Article  Google Scholar 

  21. LI Guo-dong, SHEN Yan-bai, ZHAO Si-kai, et al. Construction of rGO-SnO2 heterojunction for enhanced hydrogen detection [J]. Applied Surface Science, 2022, 585: 152623. DOI: https://doi.org/10.1016/j.apsusc.2022.152623.

    Article  Google Scholar 

  22. YIN Yao-yu, KANG Xin-chen, HAN Bu-xing. Two-dimensional materials: Synthesis and applications in the electro-reduction of carbon dioxide [J]. Chemical Synthesis, 2022, 2(4): 19. DOI: https://doi.org/10.20517/cs.2022.20.

    Article  Google Scholar 

  23. GAO Ming-ming, LI Wei-xia, SU Xiao-jiang, et al. A regenerable Cu2O/BiOBr S-scheme heterojunction photocatalysts for efficient photocatalytic degradation of mixed organic pollutants [J]. Separation and Purification Technology, 2023, 313: 123447. DOI: https://doi.org/10.1016/j.seppur.2023.123447.

    Article  Google Scholar 

  24. FAN Guo-dong, ZHOU Jian-feng, RUAN Fang-yi, et al. The Z-scheme photocatalyst S-BiOBr/Bi2Sn2O7 with 3D/0D interfacial structure for the efficient degradation of organic pollutants [J]. Separation and Purification Technology, 2023, 309: 123099. DOI: https://doi.org/10.1016/j.seppur.2023.123099.

    Article  Google Scholar 

  25. LAN Meng, ZHENG Nan, DONG Xiao-li, et al. Application of flexible PAN/BiOBr-Cl microfibers as self-supporting and highly active photocatalysts for nitrogen fixation and dye degradation [J]. Applied Surface Science, 2022, 575: 151743. DOI: https://doi.org/10.1016/j.apsusc.2021.151743.

    Article  Google Scholar 

  26. GU Ying-ying, ZHAO Li, YANG Ming-yang, et al. Preparation and characterization of highly photocatalytic active hierarchical BiOX (X=Cl, Br, I) microflowers for rhodamine B degradation with kinetic modelling studies [J]. Journal of Central South University, 2017, 24(4): 754–765. DOI: https://doi.org/10.1007/s11771-017-3477-x.

    Article  Google Scholar 

  27. ZHONG Wei-lin, WANG Chao, ZHAO Hai-lun, et al. Synergistic effect of photo-thermal catalytic glycerol reforming hydrogen production over 2D Au/TiO2 nanoflakes [J]. Chemical Engineering Journal, 2022, 446: 137063. DOI: https://doi.org/10.1016/j.cej.2022.137063.

    Article  Google Scholar 

  28. LUNA M, GATICA J M, VIDAL H, et al. Au-TiO2/SiO2 photocatalysts with NOx depolluting activity: Influence of gold particle size and loading [J]. Chemical Engineering Journal, 2019, 368: 417–427. DOI: https://doi.org/10.1016/j.cej.2019.02.167.

    Article  Google Scholar 

  29. ZHANG Yi-xuan, LIU Cong, ZHOU Ye, et al. Boosting light harvesting and charge separation over hollow double-shelled Ag@SrTiO3-TiO2 with Z-scheme heterostructure for highly efficient photocatalytic reduction of nitrate to N2 [J]. Chemical Engineering Journal, 2023, 457: 140992. DOI: https://doi.org/10.1016/j.cej.2022.140992.

    Article  Google Scholar 

  30. DANG Jing-jing, ZHANG Jian-xu, SHEN Yun, et al. Fabrication of magnetically recyclable Fe3O4/BiOCl/BiOBr nanocomposite with Z-scheme heterojunction for high-efficiency photocatalytic degradation of tetracycline [J]. Materials Science in Semiconductor Processing, 2023, 158: 107371. DOI: https://doi.org/10.1016/j.mssp.2023.107371.

    Article  Google Scholar 

  31. XING Yong-lei, WU Dan-ping, JIN Xiao-yong, et al. Enhanced photocatalytic activity of Bi24O31Br10 nanosheets by the photodeposition of Au nanoparticles [J]. Solid State Sciences, 2019, 95: 105921. DOI: https://doi.org/10.1016/j.solidstatesciences.2019.06.010.

    Article  Google Scholar 

  32. ZHANG Jing-wen, CAO Gang, WANG Hai-yang, et al. Graphene-Bi24O31Br10 composites with tunable architectures for enhanced photocatalytic activity and mechanism [J]. Ceramics International, 2016, 42(10): 11796–11804. DOI: https://doi.org/10.1016/j.ceramint.2016.04.100.

    Article  Google Scholar 

  33. XU Yan-jie, WANG Fang, LEI Shu-lai, et al. In situ grown two-dimensional TiO2/Ti3CN MXene heterojunction rich in Ti3+ species for highly efficient photoelectrocatalytic CO2 reduction [J]. Chemical Engineering Journal, 2023, 452: 139392. DOI: https://doi.org/10.1016/j.cej.2022.139392.

    Article  Google Scholar 

  34. HE Yun, ZHU Long-kai, HU Jue, et al. Enhanced photoelectrochemical activity of bi-functional photocatalytic fuel cell by a superior heterostructure SnO2/BiOBr/MoS2 photoanode [J]. Applied Surface Science, 2023, 622: 156821. DOI: https://doi.org/10.1016/j.apsusc.2023.156821.

    Article  Google Scholar 

  35. XU Liang, WU Xue-qian, LI Chun-yu, et al. Sonocatalytic degradation of tetracycline by BiOBr/FeWO4 nanomaterials and enhancement of sonocatalytic effect [J]. Journal of Cleaner Production, 2023, 394: 136275. DOI: https://doi.org/10.1016/j.jclepro.2023.136275.

    Article  Google Scholar 

  36. QIN Wen-bo, ZHANG Ren-ze, YUAN Zhen-yu, et al. Exposure surface active sites of perovskite-type LaFeO3 gas sensors by selectively dissolving La cations for enhancing gas sensing properties to acetone [J]. Advanced Materials Technologies, 2022, 7(11): 2200255. DOI: https://doi.org/10.1002/admt.202200255.

    Article  Google Scholar 

  37. SHEN Yan-bai, ZHOU Peng-fei, ZHAO Si-kai, et al. Synthesis of high-efficient TiO2/clinoptilolite photocatalyst for complete degradation of xanthate [J]. Minerals Engineering, 2020, 159: 106640. DOI: https://doi.org/10.1016/j.mineng.2020.106640.

    Article  Google Scholar 

  38. SHU Kai-qian, CHUAICHAM C, NOGUCHI Y, et al. In-situ hydrothermal synthesis of Fe-doped hydroxyapatite photocatalyst derived from converter slag toward xanthate photodegradation and Cr(VI) reduction under visible-light irradiation [J]. Chemical Engineering Journal, 2023, 459: 141474. DOI: https://doi.org/10.1016/j.cej.2023.141474.

    Article  Google Scholar 

  39. ZHENG Yu-fei, YUAN Fei, GAO Deng-zheng, et al. Improved visible-light-driven activity of micro graphite/BiOI nanocomposite for effective removal of xanthate from wastewater [J]. Materials Research Bulletin, 2023, 158: 112080. DOI: https://doi.org/10.1016/j.materresbull.2022.112080.

    Article  Google Scholar 

  40. ZHOU Peng-fei, SHEN Yan-bai, ZHAO Si-kai, et al. Facile synthesis of clinoptilolite-supported Ag/TiO2 nanocomposites for visible-light degradation of xanthates [J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 122: 231–240. DOI: https://doi.org/10.1016/j.jtice.2021.04.049.

    Article  Google Scholar 

  41. RASOULI K, ALAMDARI A, SABBAGHI S. Ultrasonic-assisted synthesis of α-Fe2O3@TiO2 photocatalyst: Optimization of effective factors in the fabrication of photocatalyst and removal of non-biodegradable cefixime via response surface methodology-central composite design [J]. Separation and Purification Technology, 2023, 307: 122799. DOI: https://doi.org/10.1016/j.seppur.2022.122799.

    Article  Google Scholar 

  42. van TRAN C, LA D D, THI HOAI P N, et al. New TiO2-doped Cu-Mg spinel-ferrite-based photocatalyst for degrading highly toxic Rhodamine B dye in wastewater [J]. Journal of Hazardous Materials, 2021, 420: 126636. DOI: https://doi.org/10.1016/j.jhazmat.2021.126636.

    Article  Google Scholar 

  43. CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP [J]. Zeitschrift Für Kristallographie - Crystalline Materials, 2005, 220(5–6): 567–570. DOI: https://doi.org/10.1524/zkri.220.5.567.65075.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

QI Yao-zhong developed the practical experiments, overarching research goals and edited the draft of manuscript. SHEN Yan-bai and ZHAO Si-kai conducted the literature review and overarching research goals. JIANG Xiao-yu, GAO Shu-ling, HAN Cong and LIU Wen-bao validated the proposed method with practical experiments. SAN Xiao-guang and MENG Dan edited the manuscript.

Corresponding authors

Correspondence to Yan-bai Shen  (沈岩柏) or Si-kai Zhao  (赵思凯).

Ethics declarations

QI Yao-zhong, SHEN Yan-bai, ZHAO Si-kai, JIANG Xiao-yu, GAO Shu-ling, HAN Cong, LIU Wen-bao, SAN Xiao-guang and MENG Dan declare that they have no conflict of interest.

Additional information

Foundation item: Projects(52274255, 51674067) supported by the National Natural Science Foundation of China; Project (2020YFB2008702) supported by the National Key R&D Program of China; Projects(N2201008, N2201004) supported by the Fundamental Research Funds for the Central Universities, China; Project(XLYC1807160) supported by the Liaoning Revitalization Talents Program, China; Project(2022M720025) supported by the China Postdoctoral Science Foundation; Project supported by Postdoctoral Foundation of Northeastern University, China; Project (2022QNRC001) supported by the Young Elite Scientists Sponsorship Program by CAST, China

Supporting information

Please scan the QR code or visit the URL link to get the supporting information http://qr.csupress.com.cn/Public/ResourceList/Detail/49416

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Yz., Shen, Yb., Zhao, Sk. et al. Dual-loading strategy to construct Au-BiOBr-TiO2 photocatalysts for fast and efficient degradation of xanthates under visible light. J. Cent. South Univ. 30, 3289–3302 (2023). https://doi.org/10.1007/s11771-023-5453-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5453-y

Key words

关键词

Navigation