Skip to main content
Log in

Hollow structured SnO2/NxC composites: Preparation approach and promising performance in lithium-ion battery

空心结构SnO2/NxC复合材料锂离子电池负极: 制备方法与性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Despite the high theoretical capacity as the anode material adopted in lithium-ion batteries, SnO2 materials undergo rapid capacity fading and low-rate performance due to the significant volume change and poor conductivity. This research proposes a straightforward approach to prepare hollow structured SnO2 spheres based on the N-dopped C coating layer (HS-SnO2@NxC) to overcome these problems. The structural and elemental characterizations were performed, and the cycling performance of HS-SnO2@NxC was systematically investigated. The presence of a hollow void in the HS-SnO2@NxC material allows for adaptation to volume changes during the charging and discharging process. Additionally, the outer framework of NxC strengthens the structural integrity of the spheres and facilitates the transfer of electrons and charges. These factors significantly improve the rate performance of the anode material. Owing to these advantages, HS-SnO2@NxC electrodes delivered a stable capacity of 610 mA·h/g at 0.25C after 750 cycles. Meanwhile, the great reversible rate performance of 76.7% was attained after a superior rate performance of 425 mA·h/g at 5C (1C=800 mA/g).

摘要

二氧化锡(SnO2)由于其高理论容量被视为锂离子电池石墨负极材料的优秀替代品, 但其大的体 积变化和较差的导电性导致容量衰减速度较快。为解决这些问题, 本研究提出了一种制备氮掺杂碳涂 层(HS-SnO2@NxC)包覆的空心结构二氧化锡球的方法, 对其结构和元素进行分析, 并对HS-SnO2@NxC 作为锂离子电池负极材料的电化学性能进行了研究。研究结果表明, 空心结构有助于缓解充放电过程 中材料体积的变化, 而氮掺杂碳涂层的存在则强化了材料的结构完整性, 进而优化了电荷的传递过 程。得益于这些优势, HS-SnO2@NxC电极在0.25C下经过750 次循环后, 仍能保持610 mA·h/g 的稳定 容量。同时, 在5C(1C=800 mA/g)的倍率测试后, 其稳定容量仍可达425 mA·h/g, 容量保持率高达 76.7%。这些结果表明, SnO2有望成为新一代高性能锂离子电池负极材料, 为这一领域的研究提供了 新视角。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. HOU Wen-xiu, YAN Chao, SHAO Pan-run, et al. Interface and electronic structure engineering induced Prussian blue analogues with ultra-stable capability for aqueous NH4+ storage [J]. Nanoscale, 2022, 14(23): 8501–8509. DOI: https://doi.org/10.1039/D2NR01735K.

    Article  Google Scholar 

  2. YANG Jun, HOU Wen-xiu, PAN Run, et al. The interfacial electronic engineering in polyhedral MOF derived Co-doped NiSe2 composite for upgrading rate and longevity performance of aqueous energy storage [J]. Journal of Alloys and Compounds, 2022, 897:163187. DOI: https://doi.org/10.1016/j.jallcom.2021.163187.

    Article  Google Scholar 

  3. YANG Jun, MIAO Xiao-wei, ZHANG Chen-rui, et al. In-situ lattice tunnel intercalation of vanadium pentoxide for improving long-term performance of rechargeable magnesium batteries [J]. 2022, 8(4): e202200025. DOI: https://doi.org/10.1002/cnma.202200025.

    Google Scholar 

  4. ZHU Zhi-qiang, WANG Shi-wen, DU Jing, et al. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries [J]. Nano Letters, 2014, 14(1):153–157. DOI:https://doi.org/10.1021/nl403631h.

    Article  Google Scholar 

  5. HUANG Zhi-qiang, GAO Hai-yan, YANG Zi-tao, et al. Improved capacity and cycling stability of SnO2 nanoanode induced by amorphization during cycling for lithium ion batteries [J]. Materials & Design, 2019, 180: 107973. DOI: https://doi.org/10.1016/j.matdes.2019.107973.

    Article  Google Scholar 

  6. MO Run-wei, TAN Xin-yi, LI Fan, et al. Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities [J]. Nature Communications, 2020, 11(1):1374. DOI:https://doi.org/10.1038/s41467-020-14859-z.

    Article  Google Scholar 

  7. WU Cheng-hao, ZHU Guan-jia, WANG Qiong, et al. Sn-based nanomaterials: From composition and structural design to their electrochemical performances for Li- and Na-ion batteries [J]. Energy Storage Materials, 2021, 43:430–462. DOI: https://doi.org/10.1016/j.ensm.2021.09.026.

    Article  Google Scholar 

  8. CAO Xi-yu, FAN Yan-chen, QU Jia-le, et al. 2D-layered Sn/Ge anodes for lithium-ion batteries with high capacity and ultra-fast Li ion diffusivity [J]. Journal of Energy Chemistry, 2020, 47: 160–165. DOI: https://doi.org/10.1016/j.jechem.2019.11.025.

    Article  Google Scholar 

  9. DERRIEN G, HASSOUN J, PANERO S, et al. Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J]. Advanced Materials, 2007, 19(17): 2336–2340. DOI: https://doi.org/10.1002/adma.200700748.

    Article  Google Scholar 

  10. HUANG Bin, LI Xin-hai, PEI Yi, et al. Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability [J]. Small, 2016, 12(14): 1945–1955. DOI: https://doi.org/10.1002/smll.201503419.

    Article  Google Scholar 

  11. TIAN Qing-hua, CHEN Feng-tao, LIU Yue, et al. Stabilizing the nanostructure of SnO2 anode by constructing heterogeneous yolk@shell hollow composite [J]. Applied Surface Science, 2019, 493:838–846. DOI: https://doi.org/10.1016/j.apsusc.2019.07.122.

    Article  Google Scholar 

  12. LIANG Jin, YU Xin-yao, ZHOU Han, et al. Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries [J]. 2014, 53(47): 12803–12807. DOI: https://doi.org/10.1002/anie.201407917.

    Google Scholar 

  13. ZHANG Kai-qiang, PARK S S. Effects of current density on anodizing behavior, micro-structure, and electrical properties of ZrO2-coated Al foils [J]. Applied Surface Science, 2019, 477: 44–49. DOI: https://doi.org/10.1016/j.apsusc.2018.01.119.

    Article  Google Scholar 

  14. ZHANG Sheng-ping, YU Chen, TAN Jing-yi, et al. Ti/SnO2-Sb2Ox-TiO2 electrodeposited from methanesulfonate electrolytes: Preparation, properties, and performance [J]. Coatings, 2022, 12(3): 366.

    Article  Google Scholar 

  15. WANG Hui-jun, JIANG Xin-ya, CHAI Ya-qin, et al. Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries [J]. Journal of Power Sources, 2018, 379: 191–196. DOI: https://doi.org/10.1016/j.jpowsour.2018.01.054.

    Article  Google Scholar 

  16. LI Jian-ping, WU Ping, YE Ya, et al. Designed synthesis of SnO2@C yolk-shell spheres for high-performance lithium storage [J]. Cryst Eng Comm, 2014, 16(4): 517–521. DOI: https://doi.org/10.1039/C3CE41571F.

    Article  Google Scholar 

  17. SU Li-wei, XU Ya-wei, XIE Jian, et al. Multi-yolk-shell SnO2/Co3Sn2@C nanocubes with high initial coulombic efficiency and oxygen reutilization for lithium storage [J]. ACS Applied Materials & Interfaces, 2016, 8: 35172–35179. DOI: https://doi.org/10.1021/acsami.6b10450.

    Article  Google Scholar 

  18. LI Bo, SONG Yun-fei, WANG Yu-xin, et al. Yolk-shelled SnO2@NxC spheres with controllable void space as high-capacity and cycle-stable anode materials for lithium-ion batteries [J]. Materials & Design, 2022, 219: 110745. DOI: https://doi.org/10.1016/j.matdes.2022.110745.

    Article  Google Scholar 

  19. LI Bo, ZHANG Ting, WEI Shang-hai, et al. Nitrogen-doped carbon hollow spheres packed with multiple nano Sn particles for enhanced lithium storage [J]. Chemical Engineering Journal, 2022, 446: 136768. DOI: https://doi.org/10.1016/j.cej.2022.136768.

    Article  Google Scholar 

  20. WU Chao, MAIER J, YU Yan. Sn-based nanoparticles encapsulated in a porous 3d graphene network: Advanced anodes for high-rate and long life li-ion batteries [J]. Advanced Functional Materials, 2015, 25(23): 3488–3496. DOI: https://doi.org/10.1002/adfm.201500514.

    Article  Google Scholar 

  21. WANG Zi-hao, ZHAO Hong-shun, ZHOU Bo, et al. In situ surface coating and oxygen vacancy dual strategy endowing a Li-rich Li1.2Mn0.55Ni0.11Co0.14O2 cathode with superior lithium storage performance [J]. ACS Applied Energy Materials, 2023, 6(1): 387–396. DOI: https://doi.org/10.1021/acsaem.2c03301.

    Article  Google Scholar 

  22. XIAO Bin, WU Gang, WANG Tong-de, et al. Enhanced Li-ion diffusion and cycling stability of Ni-free high-entropy spinel oxide anodes with high-concentration oxygen vacancies [J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2792–2803. DOI: https://doi.org/10.1021/acsami.2c12374.

    Article  Google Scholar 

  23. KIM W S, HWA Y, JEUN J H, et al. Synthesis of SnO2 nano hollow spheres and their size effects in lithium ion battery anode application [J]. Journal of Power Sources, 2013, 225: 108–112. DOI: https://doi.org/10.1016/j.jpowsour.2012.10.030.

    Article  Google Scholar 

  24. TIAN Qing-hua, TIAN Yang, ZHANG Zheng-xi, et al. Fabrication of CNT@void@SnO2@C with tube-in-tube nanostructure as high-performance anode for lithium-ion batteries [J]. Journal of Power Sources, 2015, 291: 173–180. DOI: https://doi.org/10.1016/j.jpowsour.2015.04.171.

    Article  Google Scholar 

  25. LUO Bin, WANG Bin, LIANG Ming-hui, et al. Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties [J]. Advanced Materials, 2012, 24(11): 1405–1409. DOI: https://doi.org/10.1002/adma.201104362.

    Article  Google Scholar 

  26. ZOU Yu-qin, WANG Yong. Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities [J]. ACS Nano, 2011, 5: 8108–8114. DOI: https://doi.org/10.1021/nn2027159.

    Article  Google Scholar 

  27. BISEN O Y, ATIF S, MALLYA A, et al. Self-assembled TMD nanoparticles on N-doped carbon nanostructures for oxygen reduction reaction and electrochemical oxygen sensing thereof [J]. ACS Applied Materials & Interfaces, 2022, 14(4): 5134–5148. DOI: https://doi.org/10.1021/acsami.1c11300.

    Article  Google Scholar 

  28. SUN Xiao-ming, LI Ya-dong. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles [J]. Angewandte Chemie International Edition, 2004, 43(5): 597–601. DOI: https://doi.org/10.1002/anie.200352386.

    Article  Google Scholar 

  29. CUI Guang-lei, HU Yong-Sheng, ZHI Lin-jie, et al. A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries [J]. Small, 2007, 3(12): 2066–2069. DOI: https://doi.org/10.1002/smll.200700350.

    Article  Google Scholar 

  30. MAO Dan, WAN Jia-wei, WANG Jiang-yan, et al. Sequential templating approach: A groundbreaking strategy to create hollow multishelled structures [J]. Advanced Materials, 2019, 31(38): 1802874. DOI: https://doi.org/10.1002/adma.201802874.

    Article  Google Scholar 

  31. LIU Rui-qing, LI De-yu, WANG Chen, et al. Core-shell structured hollow SnO2-polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries [J]. Nano Energy, 2014, 6: 73–81. DOI: https://doi.org/10.1016/j.nanoen.2014.03.010.

    Article  Google Scholar 

  32. GUO Yuan-yuan, ZENG Xiao-qiao, ZHANG Yu, et al. Sn nanoparticles encapsulated in 3D nanoporous carbon derived from a metal-organic framework for anode material in lithium-ion batteries [J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17172–17177. DOI:https://doi.org/10.1021/acsami.7b04561.

    Article  Google Scholar 

  33. GAO Song-wei, WANG Nü, LI Shuai, et al. A multi-wall Sn/SnO2@carbon hollow nanofiber anode material for highrate and long-life lithium-ion batteries [J]. Angewandte Chemie International Edition, 2020, 59(6): 2465–2472. DOI: https://doi.org/10.1002/anie.201913170.

    Article  Google Scholar 

  34. YOUN D H, HELLER A, MULLINS C B. Simple synthesis of nanostructured Sn/Nitrogen-doped carbon composite using nitrilotriacetic acid as lithium ion battery anode [J]. Chemistry of Materials, 2016, 28(5): 1343–1347. DOI: https://doi.org/10.1021/acs.chemmater.5b04282

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LI Bo developed the overarching research goals and edited the draft of the manuscript. HE Zhen conducted the literature review and wrote the manuscript. SONG Yun-fei validated the proposed method with practical experiments and edited the manuscript. LIU Jia-ming and YU Chen analyzed the experimental data. WANG Yu-xin edited the manuscript. All authors replied to reviews’ comments and revised the final version.

Corresponding authors

Correspondence to Yu-xin Wang  (王宇鑫) or Bo Li  (李波).

Ethics declarations

HE Zhen, SONG Yun-fei, LIU Jia-ming, YU Chen, WANG Yu-xin and LI Bo declare that they have no conflict of interest.

Additional information

Foundation item: Project(BK20201003) supported by the Natural Science Foundation of Jiangsu Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Song, Yf., Liu, Jm. et al. Hollow structured SnO2/NxC composites: Preparation approach and promising performance in lithium-ion battery. J. Cent. South Univ. 30, 3211–3220 (2023). https://doi.org/10.1007/s11771-023-5423-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5423-4

Key words

关键词

Navigation