Skip to main content
Log in

Fluid-solid interaction analysis of blood flow in the atherosclerotic carotid artery using the Eulerian-Lagrangian approach

应用欧拉-拉格朗日方法分析动脉粥样硬化性颈动脉血流的流-固相互作用

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This study aims to simulate pulsatile blood flow in the carotid artery with different stenosis severities and pulse rates. The effects of different severities of stenosis, pulse rates, and arterial wall properties on the surrounding fluid are investigated by using fluid-structure interaction (FSI) and arbitrary Lagrangian-Eulerian (ALE) methods. Carreau-Yasuda non-Newtonian and modified Mooney-Rivin hyperelastic models are applied for blood with non-Newtonian behavior and hyperelastic blood vessel’s wall, respectively. Results are presented in terms of wall radial displacement, pressure distribution, the axial velocity profile, and wall shear stress for blood. By increasing the stenosis severities, there would be a change in several parameters. Axial velocity, variation of blood pressure, the maximum wall shear stress, and wall radial displacement experience a growth. Furthermore, when the pulse rate grows in the stenosis severity of 75%, the maximum flow rate moments, maximum values for wall radial displacement, pressure, axial velocity, and wall shear stress increase as well. Using a hyperelastic model for the arterial wall, as opposed to elastic and rigid models, and treating the surrounding fluid as non-Newtonian and unsteady, allows us to achieve a more realistic simulation. In the stenosis having up to 50% of severity, red blood cells are under the enforcement of insignificant damage, while hemolysis is observed in the severe stenosis of 75%. By improving atherosclerosis, which leads to the development of elastic modulus from 500 kPa to 2 MPa, the 65% growth of the maximum value of shear stress at 60 bpm pulse rate and in the stenosis with 75% severity has been noticed. It can be demonstrated that hyperelastic models of the arterial walls lead to lower axial velocity, lower blood pressure, lower shear stress, and higher radial displacement, as opposed to rigid and elastic arterial walls.

摘要

本研究旨在模拟不同狭窄程度和脉搏率的颈动脉搏动血流。采用流-固耦合(FSI)和任意拉格朗日-欧拉(ALE)方法研究了不同狭窄程度、脉搏率和动脉壁性质对周围流体的影响。分别应用Carreau-Yasuda 非牛顿超弹性模型和修正Mooney-Rivin 超弹性模型于具有非牛顿行为的血液和超弹性血管壁。结果得到血液的壁面径向位移、压力分布、轴向速度分布和壁面剪切应力。通过增加狭窄的严重程度,轴向速度、血压变化、最大壁面剪切应力和壁面径向位移均呈增长趋势。当脉率在狭窄程度为75% 时,最大流量矩、壁面径向位移、压力、轴向速度和壁面剪应力的最大值均增大。此外,与弹性和刚性模型相比,将动脉壁视为超弹性模型,将其周围流体视为非牛顿和非定常,可以使模拟更加真实。在严重程度高达50% 的狭窄中,红细胞受到轻微损害,而在严重程度为75% 的狭窄中观察到溶血。通过改善动脉粥样硬化,弹性模量从500 kPa 提高到2 MPa,在60 bpm 脉率和狭窄程度75% 下,剪切应力最大值增长65%。与刚性和弹性动脉壁相比,动脉壁的超弹性模型导致较低的轴向速度、较低的血压、较低的剪切应力和较高的径向位移。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. DAS S, RANJAN O P, RAO V, et al. Multifunctional liposome-quantum dot hybrid nanocarriers for drug targeting to brain tumors [M]// Nanocarriers for Drug-Targeting Brain Tumors. Amsterdam: Elsevier, 2022: 649–677. DOI: https://doi.org/10.1016/b978-0-323-90773-6.00020-8.

    Chapter  Google Scholar 

  2. XIA Liang-hua, ZHANG Bo, SUN Yu-qing, et al. Analysis of Syk/PECAM-1 signaling pathway in low shear stress induced atherosclerosis based on ultrasound imaging [J]. Computer Methods and Programs in Biomedicine, 2021, 201: 105953. DOI: https://doi.org/10.1016/j.cmpb.2021.105953.

    Article  PubMed  Google Scholar 

  3. BHUSHAN R, RAVICHANDIRAN V, KUMAR N. An overview of the anatomy and physiology of the brain [M]// Nanocarriers for Drug-Targeting Brain Tumors. Amsterdam: Elsevier, 2022: 3–29. DOI: https://doi.org/10.1016/b978-0-323-90773-6.00023-3.

    Chapter  Google Scholar 

  4. YEH H H, BARANNYK O, GRECOV D, et al. The influence of hematocrit on the hemodynamics of artificial heart valve using fluid-structure interaction analysis [J]. Computers in Biology and Medicine, 2019, 110: 79–92. DOI: https://doi.org/10.1016/j.compbiomed.2019.05.003.

    Article  PubMed  Google Scholar 

  5. MUNIR I D, JAAFAR N A, SHAFIE S. Effect of catheter and stenosis on solute diffusion in non-newtonian blood flow through a catheterized stenosed artery [J]. CFD Letters, 2022, 14(12): 11–26. DOI: https://doi.org/10.37934/cfdl.14.12.1126.

    Article  Google Scholar 

  6. TRIPATHI J, VASU B, BÉG O A, et al. Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects [J]. Microvascular Research, 2022, 142: 104375. DOI: https://doi.org/10.1016/j.mvr.2022.104375.

    Article  CAS  PubMed  Google Scholar 

  7. UL HAQ U, AHMED A, MUSTANSAR Z, et al. Computational modeling and simulation of stenosis of the cerebral aqueduct due to brain tumor [J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16(1): 1018–1030. DOI: https://doi.org/10.1080/19942060.2022.2056511.

    Article  Google Scholar 

  8. SEFIDGAR M, SOLTANI M, RAAHEMIFAR K, et al. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature [J]. Microvascular Research, 2015, 99: 43–56. DOI: https://doi.org/10.1016/j.mvr.2015.02.007.

    Article  CAS  PubMed  Google Scholar 

  9. ALBADAWI M, ABUOUF Y, ELSAGHEER S, et al. Influence of rigid-elastic artery wall of carotid and coronary stenosis on hemodynamics [J]. Bioengineering, 2022, 9(11): 708. DOI: https://doi.org/10.3390/bioengineering9110708.

    Article  PubMed  PubMed Central  Google Scholar 

  10. LONE T, ALDAY A, ZAKERZADEH R. Numerical analysis of stenoses severity and aortic wall mechanics in patients with supravalvular aortic stenosis [J]. Computers in Biology and Medicine, 2021, 135: 104573. DOI: https://doi.org/10.1016/j.compbiomed.2021.104573.

    Article  CAS  PubMed  Google Scholar 

  11. BALAJI E V, KUMAR N, SATARKER S, et al. Zinc as a plausible epigenetic modulator of glioblastoma multiforme [J]. European Journal of Pharmacology, 2020, 887: 173549. DOI: https://doi.org/10.1016/j.ejphar.2020.173549.

    Article  Google Scholar 

  12. NEJAD A A, TALEBI Z, CHERAGHALI D, et al. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases [J]. Computer Methods and Programs in Biomedicine, 2018, 154: 109–122. DOI: https://doi.org/10.1016/j.cmpb.2017.11.016.

    Article  PubMed  Google Scholar 

  13. AHMAD JAMALI M S, ISMAIL Z. Generalized power law model of blood flow in a stenosed bifurcated artery [J]. Annals of Mathematical Modeling, 2021, 1(2): 35–46. DOI: https://doi.org/10.33292/amm.v1i2.6.

    Google Scholar 

  14. YOUNG D F, TSAI F Y. Flow characteristics in models of arterial stenoses—I. Steady flow [J]. Journal of Biomechanics, 1973, 6(4): 395–410. DOI: https://doi.org/10.1016/0021-9290(73)90099-7.

    Article  CAS  PubMed  Google Scholar 

  15. LEE K W, XU X Y. Modelling of flow and wall behaviour in a mildly stenosed tube [J]. Medical Engineering & Physics, 2002, 24(9): 575–586. DOI: https://doi.org/10.1016/S1350-4533(02)00048-6.

    Article  CAS  ADS  Google Scholar 

  16. GIJSEN F J H, van de VOSSE F N, JANSSEN J D. The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model [J]. Journal of Biomechanics, 1999, 32(6): 601–608. DOI: https://doi.org/10.1016/S0021-9290(99)00015-9.

    Article  CAS  PubMed  Google Scholar 

  17. TYFA Z, OBIDOWSKI D, REOROWICZ P, et al. Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vascular geometries [J]. Biocybernetics and Biomedical Engineering, 2018, 38(2): 228–242. DOI: https://doi.org/10.1016/j.bbe.2018.01.004.

    Article  Google Scholar 

  18. JAMALEDDIN MOUSAVI S, JAYENDIRAN R, FARZANEH S, et al. Coupling hemodynamics with mechanobiology in patient-specific computational models of ascending thoracic aortic aneurysms [J]. Computer Methods and Programs in Biomedicine, 2021, 205: 106107. DOI: https://doi.org/10.1016/j.cmpb.2021.106107.

    Article  CAS  PubMed  Google Scholar 

  19. AOUINET H, DHAHRI M, SAFAEI M R, et al. Turbulent boundary layers and hydrodynamic flow analysis of nanofluids over a plate [J]. Journal of Central South University, 2021, 28(11): 3340–3353. DOI: https://doi.org/10.1007/s11771-021-4859-7.

    Article  CAS  Google Scholar 

  20. LEVERETT L B, HELLUMS J D, ALFREY C P, et al. Red blood cell damage by shear stress [J]. Biophysical Journal, 1972, 12(3): 257–273. DOI: https://doi.org/10.1016/S0006-3495(72)86085-5.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. JODKO D, JECKOWSKI M, TYFA Z. Fluid structure interaction versus rigid-wall approach in the study of the symptomatic stenosed carotid artery: Importance of wall compliance and resilience of loose connective tissue [J]. International Journal for Numerical Methods in Biomedical Engineering, 2022, 38(8): e3630. DOI: https://doi.org/10.1002/cnm.3630.

    Article  PubMed  PubMed Central  Google Scholar 

  22. NIKNEJAD F, FATOURAEE N, NABAEI M. Numerical evaluation of the effect of percentage and location of stenosis on the hemodynamic bifurcation of the left coronary artery [J]. Modares Mechanical Engineering, 2019, 19(3): 743–752.

    Google Scholar 

  23. IKBAL M A. Viscoelastic blood flow through arterial stenosis—Effect of variable viscosity [J]. International Journal of Non-Linear Mechanics, 2012, 47(8): 888–894. DOI: https://doi.org/10.1016/j.ijnonlinmec.2012.05.006.

    Article  ADS  Google Scholar 

  24. LIU Xiao, FAN Yu-bo, DENG Xiao-yan, et al. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta [J]. Journal of Biomechanics, 2011, 44(6): 1123–1131. DOI: https://doi.org/10.1016/j.jbiomech.2011.01.024.

    Article  PubMed  Google Scholar 

  25. HALABIAN M, KARIMI A, BEIGZADEH B, et al. A numerical study on the hemodynamic and shear stress of double aneurysm through s-shaped vessel [J]. Biomedical Engineering: Applications, Basis and Communications, 2015, 27(4): 1550033. DOI: https://doi.org/10.4015/s1016237215500337.

    Google Scholar 

  26. NEMATOLLAHI A, SHIRANI E, SADEGHI M R, et al. Effects of shear-dependent transport properties on lumen surface concentration of LDL particles in stenosed carotid artery [J]. Meccanica, 2015, 50(7): 1733–1746. DOI: https://doi.org/10.1007/s11012-015-0120-5.

    Article  MathSciNet  Google Scholar 

  27. RIAHI D N. Modeling unsteady two-phase blood flow in catheterized elastic artery with stenosis [J]. Engineering Science and Technology, an International Journal, 2016, 19(3): 1233–1243. DOI: https://doi.org/10.1016/j.jestch.2016.01.002.

    Article  Google Scholar 

  28. PONALAGUSAMY R, SELVI R T. Blood flow in stenosed arteries with radially variable viscosity, peripheral plasma layer thickness and magnetic field [J]. Meccanica, 2013, 48(10): 2427–2438. DOI: https://doi.org/10.1007/s11012-013-9758-z.

    Article  MathSciNet  Google Scholar 

  29. TEIMOURI K, TAVAKOLI M R, GHAFARI A, et al. Investigation of the plaque morphology effect on changes of pulsatile blood flow in a stenosed curved artery induced by an external magnetic field [J]. Computers in Biology and Medicine, 2021, 135: 104600. DOI: https://doi.org/10.1016/j.compbiomed.2021.104600.

    Article  CAS  PubMed  Google Scholar 

  30. KHAN A A, ILYAS S, ABBAS T, et al. Significance of induced magnetic field and variable thermal conductivity on stagnation point flow of second grade fluid [J]. Journal of Central South University, 2021, 28(11): 3381–3390. DOI: https://doi.org/10.1007/s11771-021-4862-z.

    Article  CAS  Google Scholar 

  31. BLAKELY I P, HORTON R E. A microfluidic computational fluid dynamics model for cellular interaction studies of sickle cell disease vaso-occlusions [J]. Microvascular Research, 2020, 132: 104052. DOI: https://doi.org/10.1016/j.mvr.2020.104052.

    Article  CAS  PubMed  Google Scholar 

  32. BAHRAMI S, NOROUZI M. Hemodynamic impacts of hematocrit level by two-way coupled FSI in the left coronary bifurcation [J]. Clinical Hemorheology and Microcirculation, 2020, 76(1): 9–26. DOI: https://doi.org/10.3233/ch-200854.

    Article  CAS  PubMed  Google Scholar 

  33. CARVALHO V, PINHO D, LIMA R A, et al. Blood flow modeling in coronary arteries: A review [J]. Fluids, 2021, 6(2): 53. DOI: https://doi.org/10.3390/fluids6020053.

    Article  CAS  ADS  Google Scholar 

  34. BUKAČ M, ČANIĆ S, TAMBAČA J, et al. Fluid-structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: A four stent computational study [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 350: 679–700. DOI: https://doi.org/10.1016/j.cma.2019.03.034.

    Article  MathSciNet  ADS  Google Scholar 

  35. SHAMLOO A, EBRAHIMI S, AMANI A, et al. Targeted drug delivery of microbubble to arrest abdominal aortic aneurysm development: A simulation study towards optimized microbubble design [J]. Scientific Reports, 2020, 10: 5393. DOI: https://doi.org/10.1038/s41598-020-62410-3.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  36. YOUNIS H F, KAAZEMPUR-MOFRAD M R, CHUNG C, et al. Computational analysis of the effects of exercise on hemodynamics in the carotid bifurcation [J]. Annals of Biomedical Engineering, 2003, 31(8): 995–1006. DOI: https://doi.org/10.1114/1.1590661.

    Article  CAS  PubMed  Google Scholar 

  37. TANG B T, FONTE T A, CHAN F P, et al. Three-dimensional hemodynamics in the human pulmonary arteries under resting and exercise conditions [J]. Annals of Biomedical Engineering, 2011, 39(1): 347–358. DOI: https://doi.org/10.1007/s10439-010-0124-1.

    Article  PubMed  Google Scholar 

  38. TAYLOR C A, HUGHES T J R, ZARINS C K. Effect of exercise on hemodynamic conditions in the abdominal aorta [J]. Journal of Vascular Surgery, 1999, 29(6): 1077–1089. DOI: https://doi.org/10.1016/S0741-5214(99)70249-1.

    Article  CAS  PubMed  Google Scholar 

  39. GIANNOGLOU G D, CHATZIZISIS Y S, ZAMBOULIS C, et al. Elevated heart rate and atherosclerosis: An overview of the pathogenetic mechanisms [J]. International Journal of Cardiology, 2008, 126(3): 302–312. DOI: https://doi.org/10.1016/j.ijcard.2007.08.077.

    Article  PubMed  Google Scholar 

  40. SCARSOGLIO S, GALLO C, SAGLIETTO A, et al. Impaired coronary blood flow at higher heart rates during atrial fibrillation: Investigation via multiscale modelling [J]. Computer Methods and Programs in Biomedicine, 2019, 175: 95–102. DOI: https://doi.org/10.1016/j.cmpb.2019.04.009.

    Article  CAS  PubMed  Google Scholar 

  41. XU Fei, KENJEREŠ S. Numerical simulations of flow patterns in the human left ventricle model with a novel dynamic mesh morphing approach based on radial basis function [J]. Computers in Biology and Medicine, 2021, 130: 104184. DOI: https://doi.org/10.1016/j.compbiomed.2020.104184.

    Article  PubMed  Google Scholar 

  42. SOOD T, ROY S, PATHAK M. Effect of pulse rate variation on blood flow through axisymmetric and asymmetric stenotic artery models [J]. Mathematical Biosciences, 2018, 298: 1–18. DOI: https://doi.org/10.1016/j.mbs.2018.01.008.

    Article  MathSciNet  PubMed  Google Scholar 

  43. SHANKAR R, NAYAK S, SINGH S, et al. Simultaneous sustained drug delivery, tracking, and on-demand photoactivation of DNA-hydrogel formulated from a biomass-derived DNA nanoparticle [J]. ACS Applied Bio Materials, 2023, 6(4): 1556–1565. DOI: https://doi.org/10.1021/acsabm.2c01059.

    Article  CAS  PubMed  Google Scholar 

  44. ARYAN H, BEIGZADEH B, SIAVASHI M. Euler-Lagrange numerical simulation of improved magnetic drug delivery in a three-dimensional CT-based carotid artery bifurcation [J]. Computer Methods and Programs in Biomedicine, 2022, 219: 106778. DOI: https://doi.org/10.1016/j.cmpb.2022.106778.

    Article  PubMed  Google Scholar 

  45. MAJEE S, SHIT G C. Modeling and simulation of blood flow with magnetic nanoparticles as carrier for targeted drug delivery in the stenosed artery [J]. European Journal of Mechanics - B/Fluids, 2020, 83: 42–57. DOI: https://doi.org/10.1016/j.euromechflu.2020.04.004.

    Article  MathSciNet  ADS  Google Scholar 

  46. WAJIHAH S A, SANKAR D S. Effects of porosity in four-layered non-linear blood rheology in constricted narrow arteries with clinical applications [J]. Computer Methods and Programs in Biomedicine, 2021, 199: 105907. DOI: https://doi.org/10.1016/j.cmpb.2020.105907.

    Article  Google Scholar 

  47. TENG Zhong-zhao, YUAN Jian-min, FENG Jia-xuan, et al. The influence of constitutive law choice used to characterise atherosclerotic tissue material properties on computing stress values in human carotid plaques [J]. Journal of Biomechanics, 2015, 48(14): 3912–3921. DOI: https://doi.org/10.1016/j.jbiomech.2015.09.023.

    Article  PubMed  PubMed Central  Google Scholar 

  48. SELIMEFENDIGIL F, ÖZTOP H F. Fluid-solid interaction of elastic-step type corrugation effects on the mixed convection of nanofluid in a vented cavity with magnetic field [J]. International Journal of Mechanical Sciences, 2019, 152: 185–197. DOI: https://doi.org/10.1016/j.ijmecsci.2018.12.044.

    Article  Google Scholar 

  49. MORADICHEGHAMAHI J, JAHANGIRI M, MOUSAVIRAAD M, et al. Computational studies of comparative and cumulative effects of turbulence, fluid-structure interactions, and uniform magnetic fields on pulsatile non-Newtonian flow in a patient-specific carotid artery [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(10): 1–22. DOI: https://doi.org/10.1007/s40430-020-02608-8.

    Article  Google Scholar 

  50. AMES J, PULERI D F, BALOGH P, et al. Multi-GPU immersed boundary method hemodynamics simulations [J]. Journal of Computational Science, 2020, 44: 101153. DOI: https://doi.org/10.1016/j.jocs.2020.101153.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  51. JANELA J, MOURA A, SEQUEIRA A. A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries [J]. Journal of Computational and Applied Mathematics, 2010, 234(9): 2783–2791. DOI: https://doi.org/10.1016/j.cam.2010.01.032.

    Article  MathSciNet  Google Scholar 

  52. KHAMDAENG T, LUO J, VAPPOU J, et al. Arterial stiffness identification of the human carotid artery using the stress-strain relationship in vivo [J]. Ultrasonics, 2012, 52(3): 402–411. DOI: https://doi.org/10.1016/j.ultras.2011.09.006.

    Article  CAS  PubMed  Google Scholar 

  53. SOMMER G, HOLZAPFEL G A. 3D constitutive modeling of the biaxial mechanical response of intact and layer-dissected human carotid arteries [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 5(1): 116–128. DOI: https://doi.org/10.1016/j.jmbbm.2011.08.013.

    Article  PubMed  Google Scholar 

  54. MISIULIS E, DŽIUGYS A, NAVAKAS R, et al. A fluid-structure interaction model of the internal carotid and ophthalmic arteries for the noninvasive intracranial pressure measurement method [J]. Computers in Biology and Medicine, 2017, 84: 79–88. DOI: https://doi.org/10.1016/j.compbiomed.2017.03.014.

    Article  PubMed  Google Scholar 

  55. SELIMEFENDIGIL F, OZTOP H F, CHAMKHA A J. MHD mixed convection in a nanofluid filled vertical lid-driven cavity having a flexible fin attached to its upper wall [J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(1): 325–340. DOI: https://doi.org/10.1007/s10973-018-7036-y.

    Article  CAS  Google Scholar 

  56. LI Heng, KU Xiao-ke, LIN Jian-zhong. Eulerian-Lagrangian simulation of inertial migration of particles in circular Couette flow [J]. Physics of Fluids, 2020, 32(7): 073308. DOI: https://doi.org/10.1063/5.0009951.

    Article  CAS  ADS  Google Scholar 

  57. SELIMEFENDIGIL F, ÇOĞAN M, ÖZTOP H F. Combined effects of local curvature and elasticity of an isothermal wall for jet impingement cooling under magnetic field effects [J]. Journal of Central South University, 2021, 28(11): 3534–3544. DOI: https://doi.org/10.1007/s11771-021-4873-9.

    Article  CAS  Google Scholar 

  58. KAOUI B. Algorithm to implement unsteady jump boundary conditions within the lattice Boltzmann method [J]. The European Physical Journal E, 2020, 43(4): 23. DOI: https://doi.org/10.1140/epje/i2020-11947-x.

    Article  CAS  Google Scholar 

  59. LOPES D, PUGA H, TEIXEIRA J C, et al. Influence of arterial mechanical properties on carotid blood flow: Comparison of CFD and FSI studies [J]. International Journal of Mechanical Sciences, 2019, 160: 209–218. DOI: https://doi.org/10.1016/j.ijmecsci.2019.06.029.

    Article  Google Scholar 

  60. SUTRADHAR A. Effects of buoyant and Saffman lift force on magnetic drug targeting in microvessel in the presence of inertia [J]. Microvascular Research, 2021, 133: 104099. DOI: https://doi.org/10.1016/j.mvr.2020.104099.

    Article  CAS  PubMed  Google Scholar 

  61. SHANKAR NARAYAN S, SAHA S, BHATTACHARJEE A. A 2D FSI mathematical model of blood flow to analyze the hyper-viscous effects in atherosclerotic COVID patients [J]. Results in Engineering, 2021, 12: 100275. DOI: https://doi.org/10.1016/j.rineng.2021.100275.

    Article  Google Scholar 

  62. SELIMEFENDIGIL F, ÖZTOP H F, CHAMKHA A J. Analysis of mixed convection of nanofluid in a 3D lid-driven trapezoidal cavity with flexible side surfaces and inner cylinder [J]. International Communications in Heat and Mass Transfer, 2017, 87: 40–51. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2017.06.015.

    Article  CAS  Google Scholar 

  63. NUNTADILOK B, POULTER J, BOONKRONG P. Numerical study of pulsatile blood flow in the coronary system with the RCA bypass graft [J]. Journal of Pure and Applied Mathematics: Advances and Applications, 2013, 9: 93–113.

    Google Scholar 

  64. MANISHA, NASHA V, KUMAR S. Non-Newtonian blood flow model with the effect of different geometry of stenosis [J]. Journal of Mathematical and Computational Science, 2022, 12: 86. DOI: https://doi.org/10.28919/jmcs/7104.

    Google Scholar 

  65. B V, DUBEY A, BÉG O A. Finite element analysis of non-Newtonian magnetohemodynamic flow conveying nanoparticles through a stenosed coronary artery [J]. Heat Transfer—Asian Research, 2020, 49(1): 33–66. DOI: https://doi.org/10.1002/htj.21598.

    Article  Google Scholar 

  66. SUN Yue, LIU Mei-ling, XIAO Yue, et al. A novel molecular communication inspired detection method for the evolution of atherosclerosis [J]. Computer Methods and Programs in Biomedicine, 2022, 219: 106756. DOI: https://doi.org/10.1016/j.cmpb.2022.106756.

    Article  PubMed  Google Scholar 

  67. SHATNAWI H. Computational fluid flow model for the development of an arterial bypass graft [J]. CFD Letters, 2022, 14(10): 99–111. DOI: https://doi.org/10.37934/cfdl.14.10.99111.

    Article  Google Scholar 

  68. ZOVATTO L, PEDRIZZETTI G. Fluid flow in a helical vessel in presence of a stenosis [J]. Meccanica, 2017, 52(3): 545–553. DOI: https://doi.org/10.1007/s11012-015-0297-7.

    Article  MathSciNet  Google Scholar 

  69. CHUCHALERM N, SAWANGTONG W, WIWATANAPATAPHEE B, et al. Study of Non-newtonian blood flow-heat transfer characteristics in the human coronary system with an external magnetic field [J]. Mathematical Biosciences and Engineering, 2022, 19(9): 9550–9570. DOI: https://doi.org/10.3934/mbe.2022444.

    Article  MathSciNet  PubMed  Google Scholar 

  70. TANG E, WEI Z A, FOGEL M A, et al. Fluid-structure interaction simulation of an intra-atrial fontan connection [J]. Biology, 2020, 9(12): 412. DOI: https://doi.org/10.3390/biology9120412.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ava BINA: Writing–original draft, Writing–revision, Proof-read, Submission. Majid SIAVASHI: Conceptualization, Investigation, Resources, Writing–review & editing, Supervision, Project administration. Mojtaba SAYYADNEJAD: Software, Data curation. Borhan BEIGZADEH: Conceptualization, Investigation, Supervision.

Corresponding authors

Correspondence to Majid Siavashi or Borhan Beigzadeh.

Ethics declarations

All authors declare that they have no conflict of interest regarding this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siavashi, M., Bina, A., Sayadnejad, M. et al. Fluid-solid interaction analysis of blood flow in the atherosclerotic carotid artery using the Eulerian-Lagrangian approach. J. Cent. South Univ. 31, 151–168 (2024). https://doi.org/10.1007/s11771-023-5395-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5395-4

Key words

关键词

Navigation