Skip to main content
Log in

Fabrication of Fe3C nanoparticles encapsulated in undoped graphite carbon and their catalysis for oxygen reduction

无掺杂石墨碳封装Fe3C纳米颗粒的制备及其氧还原性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In recent years, nitrogenous metallic-complex catalysts for oxygen reduction reaction (ORR) have been extensively reported, but the exact role of Fe3C in the catalytic process is not clear due to the interference of reactive sites such as FexN, NxC and Fe nanoparticles. In this work, a new type of pyrolysis catalyst Fe3C-core/C-shell (Fe3C/C) was designed using Fe2O3 nanospheres and bacterial cellulose (BC) as raw materials. The encased nitrogen-free carbide isolated from the electrolyte, promoting the graphitic layers to form after BC carbonization toward high ORR catalytic activity, and the graphitic layers protected the internal carbide which exhibited excellent ORR activity and stability in both acidic and alkaline media. The catalyst was a model system for understanding the ORR active site of such encapsulated catalysts without other element doping. The carbide-based catalyst and mechanism proposed in this work provided a new idea for the development of ORR catalyst.

摘要

近年来,含氮金属碳化物氧还原反应(ORR)催化剂被广泛报道,但受到FexN、NxC和Fe 纳米颗 粒等多种反应活性位点的干扰,Fe3C在催化过程中的具体作用尚不清楚。本文以Fe2O3纳米微球和细菌 纤维素(BC)为原料,经热解得到了一种Fe3C/C 核壳催化剂。虽然被封装的无氮Fe3C颗粒不接触电解 液,但BC碳化后形成石墨层的ORR催化活性得到大幅提升。石墨层保护了内部碳化物,使其在酸性 和碱性电解液中均表现出良好的催化活性和稳定性。该催化剂可作为理解此类无杂元素封装型催化剂 ORR活性位点的模型系统。本文提出的碳化物催化剂及其作用机理为ORR催化剂的开发提供了新的 思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. WANG Kai, WU Yuan-yuan, CAO Xue-bo, et al. A Zn-CO2 flow battery generating electricity and methane [J]. Advanced Functional Materials, 2020, 30(9): 1908965. DOI: https://doi.org/10.1002/adfm.201908965.

    Article  Google Scholar 

  2. DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells [J]. Nature, 2012, 486(7401): 43–51. DOI: https://doi.org/10.1038/nature11115.

    Article  Google Scholar 

  3. ZHU Lian-wen, WU Jun, ZHANG Qiao, et al. Chemical-free fabrication of N, P dual-doped honeycomb-like carbon as an efficient electrocatalyst for oxygen reduction [J]. Journal of Colloid and Interface Science, 2018, 510: 32–38. DOI: https://doi.org/10.1016/j.jcis.2017.08.078.

    Article  Google Scholar 

  4. YANG Li-jun, SHUI Jiang-lan, DU Lei, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present, and future [J]. Advanced Materials, 2019, 31(13): 1804799–819. DOI: https://doi.org/10.1002/adma.201804799.

    Article  Google Scholar 

  5. ZHANG Yi-jie, ZHAO Yong, JI Mu-wei, et al. Synthesis of Fe3C@porous carbon nanorods via carbonizing Fe complexes for oxygen reduction reaction and Zn–air battery [J]. Inorganic Chemistry Frontiers, 2020, 7(4): 889–896. DOI: https://doi.org/10.1039/c9qi01544b.

    Article  Google Scholar 

  6. CHEN Peng-zuo, ZHOU Tian-pei, XING Li-li, et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions [J]. Angewandte Chemie International Edition, 2017, 56(2): 610–614. DOI: https://doi.org/10.1002/anie.201610119.

    Article  Google Scholar 

  7. SHEN Hang-jia, GRACIA-ESPINO E, MA Jing-yuan, et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media [J]. Angewandte Chemie, 2017, 56(44): 13800–13804. DOI: https://doi.org/10.1002/ange.201706602.

    Article  Google Scholar 

  8. JI D X, FAN L, TAO L, et al. The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries [J]. Angewandte Chemie International Edition, 2019, 58(39): 13840–13844. DOI: https://doi.org/10.1002/anie.201908736.

    Article  Google Scholar 

  9. ZHANG Xiao-yan, ZHANG Shan, YANG Yong, et al. A general method for transition metal single atoms anchored on honeycomb-like nitrogen-doped carbon nanosheets [J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(10): e1906905. DOI: https://doi.org/10.1002/adma.201906905.

    Article  Google Scholar 

  10. ZHU Zheng-ju, YIN Hua-jie, WANG Yun, et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst [J]. Advanced Materials, 2020, 32(42): 2004670. DOI: https://doi.org/10.1002/adma.202004670.

    Article  Google Scholar 

  11. HOU Yang, HUANG Tai-zhong, WEN Zhen-hai, et al. Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions [J]. Advanced Energy Materials, 2014, 4(11): 1400337. DOI: https://doi.org/10.1002/aenm.201400337.

    Article  Google Scholar 

  12. AHN S H, YU X W, MANTHIRAM A. “Wiring” Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media [J]. Advanced Materials (Deerfield Beach, Fla), 2017, 29(26): 1606544. DOI: https://doi.org/10.1002/adma.201606534.

    Article  Google Scholar 

  13. YANG Wen-xiu, LIU Xiang-jian, YUE Xiao-yu, et al. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction [J]. Journal of the American Chemical Society, 2015, 137(4): 1436–1439. DOI: https://doi.org/10.1021/ja5129132.

    Article  Google Scholar 

  14. ZHONG Hai-xia, WANG Jun, ZHANG Yu-wei, et al. ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts [J]. Angewandte Chemie International Edition, 2014, 53(51): 14235–14239. DOI: https://doi.org/10.1002/anie.201408990.

    Article  Google Scholar 

  15. WU Yuan-yuan, DANG Chen-yang, WU Jun, et al. A photothermal system for wastewater disposal and co-generation of clean water and electricity [J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107124. DOI: https://doi.org/10.1016/j.jece.2021.107124.

    Article  Google Scholar 

  16. SONG Li, CAO Xue-bo, LI Lei, et al. General method for large-area films of carbon nanomaterials and application of a self-assembled carbon nanotube film as a high-performance electrode material for an all-solid-state supercapacitor [J]. Advanced Functional Materials, 2017, 27(21): 1700474. DOI: https://doi.org/10.1002/adfm.201700474.

    Article  Google Scholar 

  17. CHEN Li-feng, HUANG Zhi-hong, LIANG Hai-wei, et al. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose [J]. Energy and Environmental Science, 2013, 6: 3331–3338. DOI: https://doi.org/10.1039/C3EE42366B.

    Article  Google Scholar 

  18. BIAN Hui-yang, LUO Jing, WANG Rui-bin, et al. Recyclable and reusable maleic acid for efficient production of cellulose nanofibrils with stable performance [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 20022–20031. DOI: https://doi.org/10.1021/acssuschemeng.9b05766.

    Article  Google Scholar 

  19. CHEN Heng, LIU Ting, MOU Ji-rong, et al. Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors [J]. Nano Energy, 2019, 63: 103836. DOI: https://doi.org/10.1016/j.nanoen.2019.06.032.

    Article  Google Scholar 

  20. LIANG Hai-wei, WU Zhen-yu, CHEN Li-feng, et al. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery [J]. Nano Energy, 2015, 11: 366–376. DOI: https://doi.org/10.1016/j.nanoen.2014.11.008.

    Article  Google Scholar 

  21. WAN Yi-zao, YANG Zhi-wei, XIONG Guang-yao, et al. Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries [J]. Journal of Power Sources, 2015, 294: 414–419. DOI: https://doi.org/10.1016/j.jpowsour.2015.06.057.

    Article  Google Scholar 

  22. CHEN Li-feng, HUANG Zhi-hong, LIANG Hai-wei, et al. Bacterial-cellulose-derived carbon Nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: An asymmetric supercapacitor with high energy and power density [J]. Advanced Materials, 2013, 25(34): 4746–4752. DOI: https://doi.org/10.1002/adma.201204949.

    Article  Google Scholar 

  23. XU Jin-chao, RONG Jian, QIU Feng-xian, et al. Highly dispersive NiCo2S4 nanoparticles anchored on nitrogen-doped carbon nanofibers for efficient hydrogen evolution reaction [J]. Journal of Colloid and Interface Science, 2019, 555: 294–303. DOI: https://doi.org/10.1016/j.jcis.2019.07.104.

    Article  Google Scholar 

  24. YAN Ming-xia, QU Wen-jie, SU Qing-dong, et al. Biodegradable bacterial cellulose-supported quasi-solid electrolyte for lithium batteries [J]. ACS Applied Materials & Interfaces, 2020, 12(12): 13950–13958. DOI: https://doi.org/10.1021/acsami.0c00621.

    Article  Google Scholar 

  25. WEN Zhen-hai, CI Su-qin, ZHANG Fei, et al. Nitrogen-enriched core-shell structured Fe/Fe3C-C nanorods as advanced electrocatalysts for oxygen reduction reaction [J]. Advanced Materials, 2012, 24(11): 1399–1404. DOI: https://doi.org/10.1002/adma.201290061.

    Article  Google Scholar 

  26. JIANG Wen-jie, GU Lin, LI Li, et al. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx [J]. Journal of the American Chemical Society, 2016, 138(10): 3570–3578. DOI: https://doi.org/10.1021/jacs.6b00757.

    Article  Google Scholar 

  27. WU Gang, MORE K L, JOHNSTON C M, et al. Highperformance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt [J]. Science, 2011, 332(6028): 443–447. DOI: https://doi.org/10.1126/science.1200832.

    Article  Google Scholar 

  28. FAUBERT G, CôTÉ R, DODELET J P, et al. Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of FeII acetate adsorbed on 3, 4, 9, 10-perylenetetracarboxylic dianhydride [J]. Electrochimica Acta, 1999, 44(15): 2589–2603. DOI: https://doi.org/10.1016/S0013-4686(98)00382-X.

    Article  Google Scholar 

  29. DENG De-hui, YU Liang, CHEN Xiao-qi, et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction [J]. Angewandte Chemie, 2013, 125(1): 389–393. DOI: https://doi.org/10.1002/ange.201204958.

    Article  Google Scholar 

  30. LIAO Yong-ping, PAN Kai, WANG Lei, et al. Facile synthesis of high-crystallinity graphitic carbon/Fe3C nanocomposites as counter electrodes for high-efficiency dye-sensitized solar cells [J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3663–3670. DOI: https://doi.org/10.1021/am4001584.

    Article  Google Scholar 

  31. LU Yi-zhong, JIANG Yuan-yuan, GAO Xiao-hui, et al. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts [J]. Journal of the American Chemical Society, 2014, 136(33): 11687–11697. DOI: https://doi.org/10.1021/ja5041094.

    Article  Google Scholar 

  32. YANG Wen-xiu, LIU Xiang-jian, YUE Xiao-yu, et al. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction [J]. Journal of the American Chemical Society, 2015, 137(4): 1436–1439. DOI: https://doi.org/10.1021/ja5129132.

    Article  Google Scholar 

  33. ZHANG Yang, ZAI Jian-tao, HE Kai, et al. Fe3C nanoparticles encapsulated in highly crystalline porous graphite: Salt-template synthesis and enhanced electrocatalytic oxygen evolution activity and stability [J]. Chemical Communications (Cambridge, England), 2018, 54(25): 3158–3161. DOI: https://doi.org/10.1039/c8cc01057a.

    Article  Google Scholar 

  34. XIA Hong-yin, ZHANG Shan, ZHU Xiao-qing, et al. Highly efficient catalysts for oxygen reduction using well-dispersed iron carbide nanoparticles embedded in multichannel hollow nanofibers [J]. Journal of Materials Chemistry A, 2020, 8(35): 18125–18131. DOI: https://doi.org/10.1039/d0ta06306a.

    Article  Google Scholar 

  35. WEI Zhen-hua, XING Rong-e, ZHANG Xuan, et al. Facile template-free fabrication of hollow nestlike α-Fe2O3 nanostructures for water treatment [J]. ACS Applied Materials & Interfaces, 2013, 5(3): 598–604. DOI: https://doi.org/10.1021/am301950k.

    Article  Google Scholar 

  36. GU Wen-ling, HU Liu-yong, LI Jing, et al. Iron and nitrogen co-doped hierarchical porous graphitic carbon for a high-efficiency oxygen reduction reaction in a wide range of pH [J]. Journal of Materials Chemistry A, 2016, 4(37): 14364–14370. DOI: https://doi.org/10.1039/c6ta05516h.

    Article  Google Scholar 

  37. GUAN Bu-yuan, YU Le, LOU Xiong-wen. Formation of single-holed cobalt/N-doped carbon hollow particles with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media [J]. Advanced Science, 2017, 4(10): 1700247. DOI: https://doi.org/10.1002/advs.201700247.

    Article  Google Scholar 

  38. HUANG Qiang-sheng, ZHOU Pei-jiang, YANG Hua, et al. CoO nanosheets in situ grown on nitrogen-doped activated carbon as an effective cathodic electrocatalyst for oxygen reduction reaction in microbial fuel cells [J]. Electrochimica Acta, 2017, 232: 339–347. DOI: https://doi.org/10.1016/j.electacta.2017.02.163.

    Article  Google Scholar 

  39. FERRANDON M, KROPF A J, MYERS D J, et al. Multitechnique characterization of a polyaniline-iron-carbon oxygen reduction catalyst [J]. The Journal of Physical Chemistry C, 2012, 116(30): 16001–16013. DOI: https://doi.org/10.1021/jp302396g.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WU Jun, GU Li and HU Jing conceived and designed the study. YU Xin-hao performed the experiments. YU Jin-yuan, WANG De-qiang and HE Jia-yi conducted experiments and data analysis. WU Jun edited the draft of manuscript. GU Li, CAO Xue-bo and HU Jing reviewed the whole manuscript.

Corresponding authors

Correspondence to Jun Wu  (武军), Jing Hu  (胡静) or Li Gu  (谷俐).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Foundation item: Project(2020AD10010) supported by the Public Welfare Research Project of Jiaxing city, China; Project(LQ19B030005) supported by the Natural Science Foundation of Zhejiang Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Xh., Wu, J., Yu, Jy. et al. Fabrication of Fe3C nanoparticles encapsulated in undoped graphite carbon and their catalysis for oxygen reduction. J. Cent. South Univ. 30, 35–48 (2023). https://doi.org/10.1007/s11771-023-5227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5227-6

Key words

关键词

Navigation