Skip to main content
Log in

Seismic reliability analysis of shield tunnel faces under multiple failure modes by pseudo-dynamic method and response surface method

基于拟动力法和响应面法的多失效模式盾构隧道掌子面抗震可靠度分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to investigate the stability problem of shield tunnel faces subjected to seismic loading, the pseudo-dynamic method (P-DM) was employed to analyze the seismic effect on the face. Two kinds of failure mechanisms of active collapse and passive extrusion were considered, and a seismic reliability model of shield tunnel faces under multi-failure mode was established. The limit analysis method and the response surface method (RSM) were used together to solve the reliability of shield tunnel faces subjected to seismic action. Comparing with existing results, the results of this work are effective. The effects of seismic load and rock mass strength on the collapse pressure, extrusion pressure and reliability index were discussed, and reasonable ranges of support pressure of shield tunnel faces under seismic action were presented. This method can provide a new idea for solving the shield thrust parameter under the seismic loading.

摘要

为了研究地震作用下盾构隧道掌子面的可靠性问题,采用拟动力法分析掌子面上的地震效应。考虑主动坍塌和被动挤出2 种失效模式,建立了多失效模式下盾构隧道掌子面的抗震可靠度模型。将极限分析法与响应面法相结合,求解了地震作用下盾构隧道掌子面的可靠度。与已有研究成果进行对比,本文计算结果是有效的。分析了地震力和岩体强度对坍塌压力、挤出压力及可靠指标的影响,并给出了地震作用下盾构隧道掌子面支护力的合理范围。本文方法可为求解地震作用下的盾构推力参数提供一种新思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AN Yong-lin, ZHOU Jin, OUYANG Peng-bo, et al. Analysis of tunnel face stability with advanced pipes support [J]. Journal of Central South University, 2021, 28(2): 604–617. DOI: https://doi.org/10.1007/s11771-021-4625-x.

    Article  Google Scholar 

  2. TSINIDIS G, DE S F, ANASTASOPOULOS I, et al. Seismic behaviour of tunnels: From experiments to analysis [J]. Tunnelling and Underground Space Technology, 2020, 99: 103334. DOI: https://doi.org/10.1016/j.tust.2020.103334.

    Article  Google Scholar 

  3. WANG Z W, QIAO C S, SONG C Y, et al. Upper bound limit analysis of support pressures of shallow tunnels in layered jointed rock strata [J]. Tunnelling and Underground Space Technology, 2014, 43: 171–183. DOI: https://doi.org/10.1016/j.tust.2014.05.010.

    Article  Google Scholar 

  4. QIN C B, YANG X L, PAN Q J, et al. Upper bound analysis of progressive failure mechanism of tunnel roofs in partly weathered stratified Hoek-Brown rock masses [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 74: 157–162. DOI: https://doi.org/10.1016/j.ijrmms.2014.10.002.

    Article  Google Scholar 

  5. ZHANG Biao, WANG Xuan, ZHANG Jia-sheng, et al. Safe range analysis of clear distance of twin shallow tunnels based on limit analysis and reliability theory [J]. Journal of Central South University, 2018, 25(1): 196–207. DOI: https://doi.org/10.1007/s11771-018-3729-4.

    Article  Google Scholar 

  6. HUANG M S, LI S, YU J, et al. Continuous field based upper bound analysis for three-dimensional tunnel face stability in undrained clay [J]. Computers and Geotechnics, 2018, 94: 207–213. DOI: https://doi.org/10.1016/j.compgeo.2017.09.014.

    Article  Google Scholar 

  7. YU L, LYU C, WANG M N, et al. Three-dimensional upper bound limit analysis of a deep soil-tunnel subjected to pore pressure based on the nonlinear Mohr-Coulomb criterion [J]. Computers and Geotechnics, 2019, 112: 293–301. DOI: https://doi.org/10.1016/j.compgeo.2019.04.025.

    Article  Google Scholar 

  8. CHENG H Z, CHEN J, CHEN R P, et al. Reliability study on shield tunnel face using a random limit analysis method in multilayered soils [J]. Tunnelling and Underground Space Technology, 2019, 84: 353–363. DOI: https://doi.org/10.1016/j.tust.2018.11.038.

    Article  Google Scholar 

  9. CHEN F Y, WANG L, ZHANG W G. Reliability assessment on stability of tunnelling perpendicularly beneath an existing tunnel considering spatial variabilities of rock mass properties [J]. Tunnelling and Underground Space Technology, 2019, 88: 276–289. DOI: https://doi.org/10.1016/j.tust.2019.03.013.

    Article  Google Scholar 

  10. PERAZZELLI P, ANAGNOSOU G. Upper bound limit analysis of uplift failure in pressurized sealed rock tunnels [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(5): 719–735. DOI: https://doi.org/10.1002/nag.2759.

    Article  Google Scholar 

  11. LI D J, ZHAO L H, CHENG X, et al. Upper-bound limit analysis of passive failure of a 3D shallow tunnel face under the bidirectional inclined ground surfaces [J]. Computers and Geotechnics, 2020, 118: 103310. DOI: https://doi.org/10.1016/j.compgeo.2019.103310.

    Article  Google Scholar 

  12. ZHU J, LI X J, LIANG J W. 3D seismic responses of a long lined tunnel in layered poro-viscoelastic half-space by a hybrid FE-BE method [J]. Engineering Analysis with Boundary Elements, 2020, 14: 94–113. DOI: https://doi.org/10.1016/j.enganabound.2020.02.007.

    Article  MathSciNet  Google Scholar 

  13. MOHSENIAN V, HAJIRASOULIHA I, MARIANI S, et al. Seismic reliability assessment of RC tunnel-form structures with geometric irregularities using a combined system approach [J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106356. DOI: https://doi.org/10.1016/j.soildyn.2020.106356.

    Article  Google Scholar 

  14. LYU C, YU L, WANG M N, et al. Upper bound analysis of collapse failure of deep tunnel under karst cave considering seismic force [J]. Soil Dynamics and Earthquake Engineering, 2020, 132: 106003. DOI: https://doi.org/10.1016/j.soildyn.2019.106003.

    Article  Google Scholar 

  15. ZHANG Biao. Three-dimensional stability analysis and reliability study of tunnel faces using upper bound method [D]. Changsha: Central South University, 2018. (in Chinese)

    Google Scholar 

  16. PAN Qiu-jing, QU Xing-ru, WANG Xiang. Probabilistic seismic stability of three-dimensional slopes by pseudo-dynamic approach [J]. Journal of Central South University, 2019, 26(7): 1687–1695. DOI: https://doi.org/10.1007/s11771-019-4125-4.

    Article  Google Scholar 

  17. ESKANDARINEJAD A, SHAFIEE A H. Pseudo-dynamic analysis of seismic stability of reinforced slopes considering non-associated flow rule [J]. Journal of Central South University, 2011, 18(6): 2091–2099. DOI: https://doi.org/10.1007/s11771-011-0948-3.

    Article  Google Scholar 

  18. RAJESH B G, CHOUDHURY D. Stability of seawalls using modified pseudo-dynamic method under earthquake conditions [J]. Applied Ocean Research, 2017, 65: 154–165. DOI: https://doi.org/10.1016/j.apor.2017.04.004.

    Article  Google Scholar 

  19. PAIN A, CHOUDHURY D, BHATTACHARYYA S K. Seismic rotational stability of gravity retaining walls by modified pseudo-dynamic method [J]. Soil Dynamics and Earthquake Engineering, 2017, 94: 244–253. DOI: https://doi.org/10.1016/j.soildyn.2017.01.016.

    Article  Google Scholar 

  20. MICHALOWSKI R L, PARK D. Stability assessment of slopes in rock governed by the Hoek-Brown strength criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104217. DOI: https://doi.org/10.1016/j.ijrmms.2020.104217.

    Article  Google Scholar 

  21. ZHANG Y B, LIU X R, LIU X, et al. Numerical characterization for rock mass integrating GSI/Hoek-Brown system and synthetic rock mass method [J]. Journal of Structural Geology, 2019, 126: 318–329. DOI: https://doi.org/10.1016/j.jsg.2019.06.017.

    Article  Google Scholar 

  22. YANG X L. Upper bound limit analysis of active earth pressure with different fracture surface and nonlinear yield criterion [J]. Theoretical and Applied Fracture Mechanics, 2007, 47(1): 46–56. DOI: https://doi.org/10.1016/j.tafmec.2006.10.003.

    Article  Google Scholar 

  23. YANG X L, LI L, YIN J H. Stability analysis of rock slopes with a modified Hoek-Brown failure criterion [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(2): 181–190. DOI: https://doi.org/10.1002/nag.330.

    Article  Google Scholar 

  24. IBRAHIM E, SOUBRA A H, MOLLON G, et al. Three-dimensional face stability analysis of pressurized tunnels driven in a multilayered purely frictional medium [J]. Tunnelling and Underground Space Technology, 2015, 49: 18–34. DOI: https://doi.org/10.1016/j.tust.2015.04.001.

    Article  Google Scholar 

  25. SENENT S, YI C, JIMENEZ R. An upper bound solution for tunnel face stability analysis considering the free span [J]. Tunnelling and Underground Space Technology, 2020, 103: 103515–103528. DOI: https://doi.org/10.1016/j.tust.2020.103515.

    Article  Google Scholar 

  26. LI Z W, YANG X L, LI T Z. Face stability analysis of tunnels under steady unsaturated seepage conditions [J]. Tunnelling and Underground Space Technology, 2019, 93: 103095. DOI: https://doi.org/10.1016/j.tust.2019.103095.

    Article  Google Scholar 

  27. HAN K H, ZHANG C P, ZHANG D L. Upper-bound solutions for the face stability of a shield tunnel in multilayered cohesive-frictional soils [J]. Computers and Geotechnics, 2016, 79: 1–9. DOI: https://doi.org/10.1016/j.compgeo.2016.05.018.

    Article  Google Scholar 

  28. CHENG W C, SONG Z P, TIAN W, et al. Shield tunnel uplift and deformation characterisation: A case study from Zhengzhou metro [J]. Tunnelling and Underground Space Technology, 2018, 79: 83–95. DOI: https://doi.org/10.1016/j.tust.2018.05.002.

    Article  Google Scholar 

  29. ZHANG J H, WANG W J, ZHANG D B, et al. Safe range of retaining pressure for three-dimensional face of pressurized tunnels based on limit analysis and reliability method [J]. KSCE Journal of Civil Engineering, 2018, 22(11): 4645–4656. DOI: https://doi.org/10.1007/s12205-017-0619-5.

    Article  Google Scholar 

  30. ZHANG D B, SUN W C, WANG C Y, et al. Reliability analysis of seismic stability of shield tunnel face under multiple correlated failure modes [J]. KSCE Journal of Civil Engineering, 2021, 25(8): 3172–3185. DOI: https://doi.org/10.1007/S12205-021-2174-3.

    Article  Google Scholar 

  31. ZHANG Jia-hua, ZHANG Biao. Reliability analysis for seismic stability of tunnel faces in soft rock masses based on a 3D stochastic collapse model [J]. Journal of Central South University, 2019, 26(7): 1706–1718. DOI: https://doi.org/10.1007/s11771-019-4127-2.

    Article  Google Scholar 

  32. ZHANG J H, ZHANG L Y, WANG W J, et al. Probabilistic analysis of three-dimensional tunnel face stability in soft rock masses using Hoek-Brown failure criterion [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(11): 1601–1616. DOI: https://doi.org/10.1002/nag.3085.

    Article  Google Scholar 

  33. ZHANG D B, ZHANG B. Stability analysis of the pressurized 3D tunnel face in anisotropic and nonhomogeneous soils [J]. International Journal of Geomechanics, 2020, 20(4): 04020018. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001635.

    Article  Google Scholar 

  34. SENENT S, MOLLON G, JIMENZE R. Tunnel face stability in heavily fractured rock masses that follow the Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 440–451. DOI: https://doi.org/10.1016/j.ijrmms.2013.01.004.

    Article  Google Scholar 

  35. HOEK E. Reliability of Hoek-Brown estimates of rock mass properties and their impact on design [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(1): 63–68. DOI: https://doi.org/10.1016/s0148-9062(97)00314-8.

    Article  Google Scholar 

  36. MOLLON G, DIAS D, SOUBRA A H. Range of the safe retaining pressures of a pressurized tunnel face by a probabilistic approach [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1954–1967. DOI: https://doi.org/10.1061/(asce)gt.1943-5606.0000911.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by ZHANG Jia-hua. XU Peng established the models and solved the reliability. XU Peng and SUN Wang-cheng analyzed the results and wrote the initial draft of the manuscript. ZHANG Jia-hua and LI Bo revised and polished the manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Jia-hua Zhang  (张佳华).

Additional information

Conflict of interest

ZHANG Jia-hua, XU Peng, SUN Wang-cheng, and LI Bo declare that they have no conflict of interest.

Foundation item: Projects(51804113, 52074116) supported by the National Natural Science Foundation of China; Project(2020M682563) supported by the China Postdoctoral Science Foundation; Project(19C0743) supported by the Scientific Research Foundation of Hunan Provincial Education Department, China; Project(E52076) supported by the Science Foundation of Hunan University of Science and Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jh., Xu, P., Sun, Wc. et al. Seismic reliability analysis of shield tunnel faces under multiple failure modes by pseudo-dynamic method and response surface method. J. Cent. South Univ. 29, 1553–1564 (2022). https://doi.org/10.1007/s11771-022-5067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5067-9

Key words

关键词

Navigation