Skip to main content
Log in

Fuzzy-second order sliding mode control optimized by genetic algorithm applied in direct torque control of dual star induction motor

遗传算法优化的模糊二阶滑模控制在双星感应电机的直接转矩控制中的应用

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The direct torque control of the dual star induction motor (DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control (SOSMC) based on the super twisting algorithm (STA) combined with the fuzzy logic control (FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm (GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.

摘要

采用传统PI 控制器对双星感应电机(DTC-DSIM)进行直接转矩控制性能并不理想,可能造成转矩和磁通量波动大,对参数变化敏感等。在经典驱动中能够克服上述缺点的控制策略之一就是将超螺旋算法(STA)与模糊逻辑控制相结合的模糊二阶滑模控制方法(FSOSMC)。未来实现最优控制效果,采用遗传算法(GA)对FSOSMC 参数进行优化。将本文中的G-FSOSMC 算法与G-SOSMC、G-PI 和BBO-FSOSMC 进行性能比较,结果表明,G-FSOSMC 能有效地减小转矩和磁通量波动,并抑制电机颤振, 且参数的不确定性也不影响系统性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

I d(1,2)s, I q(1,2)s :

Components of the stator current

I dr, I qr :

Components of the rotor current

R r :

Rotor resistance

L s1, L s2 :

Stators inductances

L m :

Mutual inductance

Rs1, R s2 :

Stators resistances

P :

Pole pairs number

S a, S b, S c :

Switching states

J :

Moment of inertia

L r :

Rotor Inductance

V dc :

DC link voltage

T em :

Electromagnetic torque

Φ, ρ, Γ mi :

Positive bounds

φ dr, φ qr :

Rotor fluxes

Ω r :

Mechanical speed

φ d(1,2)s, φ q(1,2)s :

Components of the stator flux

V d(1,2)s, V q(1,2)s :

Components of the stator voltage

T r :

Load torque

s:

Stator reference frame

r:

Rotor reference frame

*, ref:

Reference value

GA:

Genetic algorithm

THD:

Total harmonics distortion

FLC:

Fuzzy logic controller

BBO:

Biogeography based optimization

DSIM:

Dual star induction machine

PI:

Proportional integral

DTC:

Direct torque control

SOSMC:

Second order sliding mode control

IAE:

Integrates the absolute error

ISE:

Integral squared error

ITSE:

Integral time-square error

STA:

Super twisting algorithm

G-FSOSMC:

Genetic fuzzy second order sliding mode control

Reference

  1. ZHAO Yi-fan, LIPO T. Space vector PWM control of dual three-phase induction machine using vector space decomposition [J]. IEEE Transactions on Industry Applications, 1995, 31(5): 1100–1109. DOI: https://doi.org/10.1109/28.464525.

    Article  Google Scholar 

  2. PIEŃKOWSKI K. Analysis and control of dual stator winding induction motor [J]. Archives of Electrical Engineering, 2012, 61(3): 421–438. DOI: https://doi.org/10.2478/v10171-012-0033-z.

    Article  Google Scholar 

  3. PARSA L. On advantages of multi-phase machines [C]//31st Annual Conference of IEEE Industrial Electronics Society. Raleigh, NC, USA: IEEE, 2005. DOI: https://doi.org/10.1109/IECON.2005.1569139.

    Google Scholar 

  4. HADIOUCHE D, RAZIK H, REZZOUG A. On the modeling and design of dual-stator windings to minimize circulating harmonic currents for VSI fed AC machines [J]. IEEE Transactions on Industry Applications, 2004, 40(2): 506–515. DOI: https://doi.org/10.1109/TIA.2004.824511.

    Article  Google Scholar 

  5. CHE Hang-seng, LEVI E, JONES M, et al. Operation of a six-phase induction machine using series-connected machineside converters [J]. IEEE Transactions on Industrial Electronics, 2014, 61(1): 164–176.

    Article  Google Scholar 

  6. TAKAHASHI I, NOGUCHI T. A new quick-response and high-efficiency control strategy of an induction motor [J]. IEEE Transactions on Industry Applications, 1986, 22(5): 820–827. DOI: https://doi.org/10.1109/TIA.1986.4504799.

    Article  Google Scholar 

  7. BENMESSAOUD F, CHIKHI A, BELKACEM S, et al. Multi-level direct torque control of induction motor using fuzzy-genetic speed regulation [C]//2019 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET). Istanbul, Turkey: IEEE, 2019: 1–5. DOI: https://doi.org/10.1109/PGSRET.2019.8882657.

    Google Scholar 

  8. DINEVA A, MOSAVI A, FAIZOLLAHZADEH A S, et al. Review of soft computing models in design and control of rotating electrical machines [J]. Energies, 2019, 12(6): 1049. DOI: https://doi.org/10.3390/en12061049.

    Article  Google Scholar 

  9. UTKIN V, LEE H. Chattering problem in sliding mode control systems [C]//International Workshop on Variable Structure Systems VSS’06. Alghero, Sardinia: IEEE, 2006: 346–350. DOI: https://doi.org/10.1109/VSS.2006.1644542.

    Google Scholar 

  10. LAAMAYAD T, NACERI F, BELKACEM S. A fuzzy sliding mode strategy for control of the dual star induction machine [J]. Journal of Electrical Engineering, 2013, 13(3): 216–223.

    Google Scholar 

  11. CHOUG N, BENAGGOUNE S, BELKACEM S. Hybrid fuzzy reference signal tracking control of a doubly fed induction generator [J]. International Journal of Engineering, Transactions B: Applications, 2020, 33(4): 567–574. DOI: https://doi.org/10.5829/ije.2020.33.04a.08.

    Google Scholar 

  12. LEVANT A. Higher-order sliding modes, differentiation and output feedback control [J]. International Journal of Control, 2003, 76: 924–941. DOI: https://doi.org/10.1080/0020717031000099029.

    Article  MATH  Google Scholar 

  13. BELKACEM S, NACERI F, ABDESSEMED R. Reduction of torque ripple in DTC for induction motor using input-output feedback linearization [J]. Serbian Journal of Electrical Engineering, 2011, 8(2): 97–110. DOI: https://doi.org/10.2298/sjee1102097b.

    Article  Google Scholar 

  14. HAN Y, MA R. Adaptive-gain second-order sliding mode direct power control for wind-turbine-driven dfig under balanced and unbalanced grid voltage [J]. Energies, 2019, 12(20): 3886. DOI: https://doi.org/10.3390/en12203886.

    Article  Google Scholar 

  15. LAGGOUN L, YOUB L, BELKACEM S, et al. Direct torque control using second order sliding mode of a double star permanent magnet synchronous machine [J]. U.P.B. Sci. Bull, Series C, 2018, 80(4).

  16. BOUMARAF F, BOUTABBA T, BELKACEM S. Fuzzy super twisting algorithm dual direct torque control of doubly fed induction machine [J]. International Journal of Electrical and Computer Engineering (IJECE), 2021, 11(5): 3782–3790. DOI: https://doi.org/10.11591/ijece.v11i5.pp3782-3790.

    Article  Google Scholar 

  17. OUADA L, BENAGGOUNE S, BELKACEM S. Neurofuzzy sliding mode controller based on a brushless doubly fed induction generator [J]. International Journal of Engineering, Transaction B: Applications, 2020, 33(2): 248–256. DOI: https://doi.org/10.5829/ije.2020.33.02b.09.

    Google Scholar 

  18. YOUB L, BELKACEM S, NACERI F, et al. Design of an adaptive fuzzy control system for dual star induction motor drives [J]. Advances in Electrical and Computer Engineering, 2018, 18(3): 37–44. DOI: https://doi.org/10.4316/aece.2018.03006.

    Article  Google Scholar 

  19. MAZOUZ F, BELKACEM S, DRID S, et al. Fuzzy sliding mode control of DFIG applied to the WECS [C]// 2019 8th International Conference on Systems and Control (ICSC). Marrakesh, Morocco: IEEE, 2019: 465 - 470. DOI: https://doi.org/10.1109/ICSC47195.2019.8950675.

  20. BOUKHALFA G, BELKACEM S, CHIKHI A, et al. Direct torque control of dual star induction motor using a fuzzy-PSO hybrid approach [J]. Applied Computing and Informatics, 2022, 18(1–2): 74–89. DOI: https://doi.org/10.1016/j.aci.2018.09.001.

    Article  Google Scholar 

  21. ZAKERI E, MOEZI S A, EGHTESAD M. Optimal interval type-2 fuzzy fractional order super twisting algorithm: A second order sliding mode controller for fully-actuated and under-actuated nonlinear systems [J]. ISA Transactions, 2019, 85: 13–32. DOI: https://doi.org/10.1016/j.isatra.2018.10.013.

    Article  Google Scholar 

  22. MAHFOUDHI S, BURAIDAH Q U, KHODJA M, et al. A second-order sliding mode controller tuning employing particle swarm optimization [J]. International Journal of Intelligent Engineering and Systems, 2020, 13(3): 212–221. DOI: https://doi.org/10.22266/ijies2020.0630.20.

    Article  Google Scholar 

  23. KUMAR S, AJMERI M. Design of controllers using PSO technique for second-order stable process with time delay [C]// Soft Computing: Theories and Applications, 2020. DOI: https://doi.org/10.1007/978-981-15-4032-5_15.

  24. COSTA B G, GRACIOLA C, ANGÉLICO B, et al. Metaheuristics optimization applied to PI controllers tuning of a DTC-SVM drive for three-phase induction motors [J]. Applied Soft Computing, 2018, 62: 776–788. DOI: https://doi.org/10.1016/j.asoc.2017.09.007.

    Article  Google Scholar 

  25. BOUMARAF F, BOUTABBA T, BELKACEM S. Dual direct torque control of doubly fed induction machine using second order sliding mode control [J]. Journal of Measurements in Engineering, 2021, 9(1): 1–12. DOI: https://doi.org/10.21595/jme.2021.21432.

    Article  Google Scholar 

  26. ZEMMIT A, MESSALTI S, HARRAGAB A. A new improved DTC of doubly fed induction machine using GA-based PI controller [J]. Ain Shams Engineering Journal, 2018, 9(4): 1877–1885. DOI: https://doi.org/10.1016/j.asej.2016.10.011.

    Article  Google Scholar 

  27. ALBATRAN S, ALOMOUSH M, KORAN A. Gravitational-search algorithm for optimal controllers design of doubly-fed induction generator [J]. International Journal of Electrical and Computer Engineering (IJECE), 2018, 8: 2. DOI: https://doi.org/10.11591/ijece.v8i2.pp780-792.

    Article  Google Scholar 

  28. MARELI M, TWALA B. An adaptive cuckoo search algorithm for optimisation [J]. Applied Computing and Informatics, 12018, 14: 107–115. DOI: https://doi.org/10.1016/j.aci.2017.09.001.

  29. BOUHADJRA D, KHELDOUN A, ZEMOUCHE A. Performance analysis of stand-alone six-phase induction generator using heuristic algorithms [J]. Mathematics and Computers in Simulation, 2020, 167: 231–249. DOI: https://doi.org/10.1016/j.matcom.2019.06.011.

    Article  MATH  Google Scholar 

  30. HASSANZADEH M E, HASANVAND S, NAYERIPOUR M. Improved optimal harmonic reduction method in PWM AC-AC converter using modified biogeography-based optimization algorithm [J]. Applied Soft Computing, 2018, 73: 460–470. DOI: https://doi.org/10.1016/j.asoc.2018.08.043.

    Article  Google Scholar 

  31. WALEY S, MAO C, BACHACHE N K. Biogeography based optimization tuned fuzzy logic controller to adjust speed of electric vehicle [J]. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2015, 16(3): 509–519. DOI: https://doi.org/10.11591/ijeecs.v16.i3.pp509-519.

    Article  Google Scholar 

  32. BOUKHALFA G, BELKACEM S, CHIKHI A. Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor [J]. Journal of Central South University, 2019, 26: 1886–1896. DOI: https://doi.org/10.1007/s11771-019-4142-3.

    Article  Google Scholar 

  33. BOUNAR N, LABDAI S, BOULKROUNE A. PSO-GSA based fuzzy sliding mode controller for DFIG-based wind turbine [J]. ISA Transactions, 2019, 85: 177–188. DOI: https://doi.org/10.1016/j.isatra.2018.10.020.

    Article  Google Scholar 

  34. MESLOUB H, BENCHOUIA M T, BOUMAARAF R, et al. Design and implementation of DTC based on AFLC and PSO of a PMSM [J]. Mathematics and Computers in Simulation, 2020, 167: 340–355. DOI: https://doi.org/10.1016/j.matcom.2018.04.010.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghoulemallah Boukhalfa.

Additional information

Foundation item

Project supported by the LEB Research Laboratory, Department of Electrical Engineering, University of Batna 2, Algeria

Contributors

Ghoulemallah BOUKHALFA conceptualized the work, developed the modelling. Sebti BELKACEM conducted the simulations, and wrote the original draft. Abdesselem CHIKHI and Moufid BOUHENTALA interpreted the results, and contributed to the write up. All authors replied to reviewers’comments and revised the final version.

Conflict of interest

Ghoulemallah BOUKHALFA, Sebti BELKACEM, Abdesselem CHIKHI, Moufid BOUHENTALA declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukhalfa, G., Belkacem, S., Chikhi, A. et al. Fuzzy-second order sliding mode control optimized by genetic algorithm applied in direct torque control of dual star induction motor. J. Cent. South Univ. 29, 3974–3985 (2022). https://doi.org/10.1007/s11771-022-5028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5028-3

Key words

关键词

Navigation