Skip to main content
Log in

Influence of Si content on interface reaction of iron-based hot-dip aluminizing on Fe sheet

Si含量对铁基热浸镀铝的界面反应影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Based on the diffusion channel, the influence of Si content on the microstructure evolution of iron-based hot-dip Al-χSi coating was analyzed (χ=0, 1.5 wt%, 3.0 wt% and 7.0 wt%). The results show that the introduction of Si makes the reaction interface change from the lingual-tooth interface of hot-dip Al to the flat interface of hot-dip Al-Si. It also reduces the thickness of the alloy layer in the coating, especially the Fe2Al5 layer. When the Si content is 1.5 wt% or 3.0 wt%, the diffusion channel crosses the conjugate line of the two-phase region (FeAl3+liquid phase) into the FeAl3 single-phase region, and then moves to the region with higher Si content. Next, the diffusion channel cuts off the conjugate line of FeAl3 phase, τ1/τ9 phase, and Fe2Al5 phase, which promotes the form of τ1/τ9 phase. The formed τ1/τ9 phase inhibits the diffusion between Fe and Al atoms. When the Si content is 7.0 wt%, the diffusion channel passes through the two-phase region (liquid phase+τ5) and enters the τ5 single-phase region. The form of τ5 single-phase region has a strong inhibitory effect on the interatomic diffusion of Fe and Al, thereby reducing the thickness of the coating, especially the Fe2Al5 layer.

摘要

基于扩散通道,分析了Si含量对铁基热浸Al-χSi涂层微观结构演变的影响(χ=0,1.5 wt%,3.0 wt%,7.0 wt%)。结果表明,Si的引入使反应界面从热浸铝的舌状界面变为热浸Al-Si 的平坦界面,同时也减少了涂层中合金层的厚度,特别是Fe2Al5层。当Si 含量为1.5 wt%或3.0 wt%时,扩散通道穿过两相区(FeAl3+液相)的共轭线进入FeAl3 单相区,再移动到Si 含量较高的区域。然后,扩散通道切断FeAl3 相、τ1/τ9 相和Fe2Al5相的共轭线,从而促进了τ1/τ9 相的形成。由此产生的τ1/τ9 相抑制了Fe 原子和Al 原子之间的扩散。当Si 含量为7.0 wt%时,扩散通道穿过(液相+τ5)两相区,进入τ5 单相区。τ5 单相区对Fe 原子和Al原子间扩散有很强的抑制作用,从而减少了涂层的厚度,特别是Fe2Al5层。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG Li-dong, TANG Di, WU Hui-bin, et al. Mechanical properties and CO2 corrosion behavior of Q125 grade oil tube steel used for ERW [J]. Journal of Central South University (Science and Technology), 2012, 43(6): 2165–2172. (in Chinese)

    Google Scholar 

  2. XIE Fei, WU Ming, CHEN Xu, et al. Effects of SO 2−4 on corrosion behavior of X80 pipeline steel in simulated Korla soil solution [J]. Journal of Central South University (Science and Technology), 2013, 44(1): 424–430. (in Chinese)

    Google Scholar 

  3. LIU Wei, LI Mou-cheng, LUO Qun, et al. Influence of alloyed magnesium on the microstructure and long-term corrosion behavior of hot-dip Al-Zn-Si coating in NaCl solution [J]. Corrosion Science, 2016, 104: 217–226. DOI: https://doi.org/10.1016/j.corsci.2015.12.014.

    Article  Google Scholar 

  4. LI Yang, JIANG Ying, LIU Bin, et al. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system [J]. Journal of Materials Science & Technology, 2021, 65: 190–201. DOI: https://doi.org/10.1016/j.jmst.2020.04.075.

    Article  Google Scholar 

  5. LIU Wei, LI Qian, LI Mou-cheng. Corrosion behaviour of hot-dip Al-Zn-Si and Al-Zn-Si-3Mg coatings in NaCl solution [J]. Corrosion Science, 2017, 121: 72–83. DOI: https://doi.org/10.1016/j.corsci.2017.03.013.

    Article  Google Scholar 

  6. KOBAYASHI S, YAKOU T K. Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment [J]. Materials Science and Engineering A, 2002, 338(1–2): 44–53. DOI: https://doi.org/10.1016/S0921-5093(02)00053-9.

    Article  Google Scholar 

  7. HUILGOL P, BHAT S, BHAT K U. Hot-dip aluminizing of low carbon steel using Al-7Si-2Cu alloy baths [J]. Journal of Coatings, 2013: 180740. DOI: https://doi.org/10.1155/2013/180740.

  8. WANG C J, CHEN S M. The high-temperature oxidation behavior of hot-dipping Al-Si coating on low carbon steel [J]. Surface and Coatings Technology, 2006, 200(22–23): 6601–6605. DOI: https://doi.org/10.1016/j.surfcoat.2005.11.031.

    Article  Google Scholar 

  9. GLASBRENNER H, BORGSTEDT H U. Preparation and characterization of Al2O3/Fe.xAly layers on MANET steel [J]. Journal of Nuclear Materials, 1994, 212–215: 1561–1565. DOI: https://doi.org/10.1016/0022-3115(94)91090-1.

    Article  Google Scholar 

  10. SERRA E, GLASBRENNER H, PERUJO A, et al. Hot-dip aluminum deposit as a permeation barrier for MANET steel [J]. Fusion Engineering and Design, 1998, 41: 149–155.

    Article  Google Scholar 

  11. KITAJIMA Y, HAYASHI S, NISHIMOTO T, et al. Rapid formation of α -Al2O3 scale on an Fe-Al alloy by pure-metal coatings at 900 °C [J]. Oxidation of Metals, 2010, 73(3–4): 375–388. DOI: https://doi.org/10.1007/s11085-009-9184-8.

    Article  Google Scholar 

  12. BOUAYAD A, GEROMETTA C, BELKEBIR A, et al. Kinetic interactions between solid iron and molten aluminium [J]. Materials Science and Engineering A, 2003, 363(1–2): 53–61. DOI: https://doi.org/10.1016/S0921-5093(03)00469-6.

    Article  Google Scholar 

  13. TAKATA N, NISHIMOTO M, KOBAYASHI S, et al. Morphology and formation of Fe-Al intermetallic layers on iron hot-dipped in Al-Mg-Si alloy melt [J]. Intermetallics, 2014, 54: 136–142. DOI: https://doi.org/10.1016/j.intermet.2014.06.003.

    Article  Google Scholar 

  14. LEMMENS B, CORLU B, STRYCKER J, et al. The effect of Si on the intermetallics formation during hot dip aluminizing [J]. Advanced Materials Research, 2014, 922: 429–434. DOI: https://doi.org/10.4028/www.scientific.net/AMR.922.429.

    Article  Google Scholar 

  15. AN J, LIU Y, LU Yao, et al. The formation of reacted film and its influence on tribological properties of extruded Al-Si-Cu-20-25Pb alloy under dry sliding [J]. Journal of Materials Science, 2003, 38: 1975–1982. DOI: https://doi.org/10.1023/A%3A1023529220567.

    Article  Google Scholar 

  16. LI Zhi-wei, RUAN Rui-wen, XI Shi-heng, et al. The influence of Al on the surface properties of the hot-dip galvanized melt [J]. Journal of Wuhan University of Technology-Materials Science Edition, 2022, 37: 117–122. DOI: https://doi.org/10.1007/s11595-022-2507-1.

    Article  Google Scholar 

  17. CHANG Y Y, TSAUR C C, ROCK J C. Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidation [J]. Surface and Coatings Technology, 2006, 200(22–23): 6588–6593. DOI: https://doi.org/10.1016/j.surfcoat.2005.11.038.

    Article  Google Scholar 

  18. GLASBRENNER H, STEIN-FECHNER K, KONYS J. Scale structure of aluminised F82H-mod.steel after HIP treatment [J]. Fusion Engineering and Design, 2000, 51–52: 105–110. DOI: https://doi.org/10.1016/S0920-3796(00)00383-5.

    Article  Google Scholar 

  19. AWAN G H, HASAN F U. The morphology of coating/substrate interface in hot-dip-aluminized steels [J]. Materials Science and Engineering A, 2008, 472(1–2): 157–165. DOI: https://doi.org/10.1016/j.msea.2007.03.013.

    Article  Google Scholar 

  20. BAHADUR A, MOHANTY O N. Structural studies of hot dip aluminized coatings on mild steel [J]. Materials Transactions JIM, 1991, 32(11): 1053–1061. DOI: https://doi.org/10.2320/matertrans1989.32.1053.

    Article  Google Scholar 

  21. PINT B A, ZHANG Y, TORTORELLI P F, et al. Evaluation of iron-aluminide CVD coatings for high temperature corrosion protection [J]. Materials at High Temperatures, 2001, 18(3): 185–192. DOI: https://doi.org/10.1179/mht.2001.021.

    Article  Google Scholar 

  22. ZHANG Y, PINT B A, GARNER G W, et al. Effect of cycle length on the oxidation performance of iron aluminide coatings [J]. Surface and Coatings Technology, 2004, 188–189: 35–40. DOI: https://doi.org/10.1016/j.surfcoat.2004.07.090.

    Article  Google Scholar 

  23. AGÜERO A, MUELAS R, GUTIéRREZ M, et al. Cyclic oxidation and mechanical behaviour of slurry aluminide coatings for steam turbine components [J]. Surface and Coatings Technology, 2007, 201(14): 6253–6260. DOI: https://doi.org/10.1016/j.surfcoat.2006.11.033.

    Article  Google Scholar 

  24. LUO Qun, LI Jian-ding, LI Bo, et al. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism [J]. Journal of Magnesium and Alloys, 2019, 7(1): 58–71. DOI: https://doi.org/10.1016/j.jma.2018.12.001.

    Article  Google Scholar 

  25. LI Zhi-wei, PENG Hao-ping, LIU Ya, et al. Synergy of ball-milling and pre-oxidation on microstructure and corrosion resistance of hot-dip zinc coating of nodular cast iron [J]. Journal of Materials Research and Technology, 2022, 16: 1402–1412. DOI: https://doi.org/10.1016/j.jmrt.2021.12.052.

    Article  Google Scholar 

  26. PANG Yue-peng, SUN Dong-ke, GU Qin-fen, et al. Comprehensive determination of kinetic parameters in solidstate phase transitions: An extended Jonhson-Mehl-Avrami-Kolomogorov model with analytical solutions [J]. Crystal Growth & Design, 2016, 16(4): 2404–2415.

    Article  Google Scholar 

  27. LUO Qun, GUO Yan-lin, LIU Bin, et al. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. Journal of Materials Science & Technology, 2020, 44: 171–190. DOI: https://doi.org/10.1016/j.jmst.2020.01.022.

    Article  Google Scholar 

  28. EI-MAHALLAWY N A, TAHA M A, SHADY M A, et al. Analysis of coating layer formedon steel strips during aluminising by hot dipping in Al-Si baths [J]. Materials Science and Technology, 1997, 13(10): 832–840. DOI: https://doi.org/10.1179/mst.1997.13.10.832.

    Article  Google Scholar 

  29. AKDENIZ M V, MEKHRABOV A O, YILMAZ T. The role of Si addition on the interfacial interaction in Fe-Al diffusion layer [J]. Scripta Metallurgica et Materialia, 1994, 31(12): 1723–1728. DOI: https://doi.org/10.1016/0956-716X(94)90471-5.

    Article  Google Scholar 

  30. HAN Wei, YIN Fu-cheng, SU Xu-ping. Effect of silicon on the growth kinetics of Fe2Al5 in Fe/Al solid state diffusion reaction [J]. Journal of Materials and Heat Treatment. 2010, 31(6): 28–32. (in Chinese)

    Google Scholar 

  31. RICHARDS R W, JONES R D, CLEMENTS P D, et al. Metallurgy of continuous hot dip aluminizing [J]. International Materials Reviews, 2013, 39(5): 191–212. DOI: https://doi.org/10.1179/imr.1994.39.5.191.

    Article  Google Scholar 

  32. ROBERT F M. Metals handbook [M]. 9th Edition American Society of Metals, 1983.

  33. NICHOLLS, JOHN E. Hot-dipped aluminum coatings [J]. Anti-corrosion Methods and Materials, 1964, 11(10): 16–21.

    Article  Google Scholar 

  34. CHENG W J, WANG C J. Effect of silicon on the formation of intermetallic phases in aluminide coating on mild steel [J]. Intermetallics, 2011, 19(10): 1455–1460. DOI: https://doi.org/10.1016/j.intermet.2011.05.013.

    Article  Google Scholar 

  35. DURANDET Y, STREZOV L, EBRILL N. Formation of Al-Zn-Si coating on low carbon steel substrates [C]// 4th International Conference on Zinc and Zinc Alloy Coated Steel Sheet. Makuhari, Chiba, Japan: The Iron and Steel Institute of Japan, 1998: 147–152.

    Google Scholar 

  36. LI Zhi-wei, PENG Hao-ping, WANG Jian-hua, et al. Effect of ball-milling pretreatment on microstructure and corrosion of hot-dip galvanized coating [J]. Materials Characterization, 2022, 192: 112177. DOI: https://doi.org/10.1016/jmatchar2002.112117.

    Article  Google Scholar 

  37. DU Yong, SCHUSTER J C, LIU Zi-kui, et al. A thermodynamic description of the Al-Fe-Si system over the whole composition and temperature ranges via a hybrid approach of CALPHAD and key experiments [J]. Intermetallics, 2008, 16(4): 554–570. DOI: https://doi.org/10.1016/j.intermet.2008.01.003.

    Article  Google Scholar 

  38. XIA Yuan, YAO Mei, ZHANG Rui-ping. Influencing factors on the growth law of hot-dip aluminum coating on A3 steel [J]. The Chinese Journal of Nonferrous Metals, 1996, 1: 74–78. (in Chinese)

    Google Scholar 

  39. WEI Han. The influence of Si on the growth kinetics of Fe2Al5 phase during the Fe-Al reaction [D]. Xiangtan: Xiangtan University, 2009. (in Chinese)

    Google Scholar 

  40. GHOSH G. Aluminum-iron-silicon [J]. Landolt-Bornstein New Series, 2008, 4: 359–409.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-ping Su  (苏旭平).

Additional information

Foundation item

Projects(51971039, 51671037) supported by the National Natural Science Foundation of China; Project(19KJA530001) supported by the Natural Science Research Project of Higher Education of Jiangsu, China; Project(KYCX21_2868) supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China

Contributors

SU Xu-ping provided the research concept and edited the manuscript. PENG Hao-ping wrote the first draft and reviewed the literature. MA Ming and XI Shi-heng conducted experiments and data analysis. PENG Hao-ping and LIU Ya summarized the experimental reaction mechanism. LEI Yun and SU Wei revised and edited the manuscript. All authors revised the final draft.

Conflict of interest

PENG Hao-ping, MA Ming, XI Shi-heng, LIU Ya, LEI Yun, SU Wei and SU Xu-ping declare that they have no conflicts of interest that would affect the work of the report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Hp., Ma, M., Xi, Sh. et al. Influence of Si content on interface reaction of iron-based hot-dip aluminizing on Fe sheet. J. Cent. South Univ. 29, 3581–3591 (2022). https://doi.org/10.1007/s11771-022-5025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5025-6

Key words

关键词

Navigation