Skip to main content
Log in

Viscoelastic behavior with damage evolution of a new smart geosynthetic in service temperature range

新型智能土工合成材料SEGB在服役温度范围内含损伤演化的流变行为

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A new type of intelligent geosynthetic product, sensor-enabled geobelt (SEGB), is developed to improve the health monitoring of geotechnical structures. It can be used as a strain monitoring sensor owing to its unique property. As a conductive polymer, its electrical resistance regularly changes with its strain. Simultaneously, the SEGB is a geosynthetic product. This implies that it can be used as a reinforcement to strengthen a geotechnical structure. Therefore, to investigate its long-term mechanical properties within the temperature range of its service, a stress relaxation test is performed within the range of −20 °C to 40 °C. The results show that the stress relaxation of the SEGB stabilizes at a certain stress level instead of decreasing to zero. Additionally, the process of its stress relaxation is accompanied by damage. Based on this phenomenon, a ternary physical constitutive model reflecting the constitutive relationship of the SEGB is established. Furthermore, a stress relaxation model involving damage evolution, temperature, and initial strain is established. It can be used to describe the stress relaxation process of SEGB at different service temperatures.

摘要

本文研发了一种新型智能土工合成材料, 即传感型土工带(SEGB), 用以改善岩土结构的健康监 测. 一方面, SEGB作为导电聚合物, 其电阻可以随着形变而有规律地变化, 可以用作变形监测传感 器. 另一方面, SEGB 是一种土工带, 可以作为筋材来加强土工结构. 为了研究其在不同使用温度下 的长期力学性能, 对其在−20 °C~40 °C的服役温度范围内进行应力松弛试验. 结果表明, SEGB 的应 力松弛最终会稳定在一定的应力水平上, 而不是下降到零. 此外, 应力松弛的过程伴随着损伤的演 化. 基于这一现象, 建立了反映SEGB本构关系的三元件物理模型, 以及涉及损伤演化、温度和初始 应变在内的应力松弛模型. 应力松弛模型可以用来描述SEGB 在不同服役温度下含损伤的应力松弛 过程.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. VENKATESWARLU H, UJJAWAL K N, HEGDE A. Laboratory and numerical investigation of machine foundations reinforced with geogrids and geocells [J]. Geotextiles and Geomembranes, 2018, 46(6): 882–896. DOI: https://doi.org/10.1016/j.geotexmem.2018.08.006.

    Article  Google Scholar 

  2. EICHHORN G N, BOWMAN A, HAIGH S K, et al. Low-cost digital image correlation and strain measurement for geotechnical applications [J]. Strain, 2020, 56(6): e12348. DOI: https://doi.org/10.1111/str.12348.

    Article  Google Scholar 

  3. YAZDANI H, HATAMI K, GRADY B P. Sensor-enabled geogrids for performance monitoring of reinforced soil structures [J]. Journal of Testing and Evaluation, 2016, 44(1): 20140501. DOI:https://doi.org/10.1520/jte20140501.

    Article  Google Scholar 

  4. CUI Xin-zhuang, CUI She-qiang, JIN Qing, et al. Laboratory tests on the engineering properties of sensor-enabled geobelts (SEGB) [J]. Geotextiles and Geomembranes, 2018, 46(1): 66–76. DOI: https://doi.org/10.1016/j.geotexmem.2017.10.004.

    Article  MathSciNet  Google Scholar 

  5. LI Jun, CUI Xin-zhuang, JIN Qing, et al. Laboratory investigation of the durability of a new smart geosynthetic material [J]. Construction and Building Materials, 2018, 169: 28–33. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.187.

    Article  Google Scholar 

  6. AHMADIPOUR M, HATAMI M, RAO K V. Preparation and characterization of nano-sized (Mg(x)Fe(1−x)O/SiO2) (x=0.1) core-shell nanoparticles by chemical precipitation method [J]. Advances in Nanoparticles, 2012, 1(3): 37–43. DOI: https://doi.org/10.4236/anp.2012.13006.

    Article  Google Scholar 

  7. ZHANG Rong-wei, MOON K S, LIN Wei, et al. Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles [J]. Journal of Materials Chemistry, 2010, 20(10): 2018. DOI: https://doi.org/10.1039/b921072e.

    Article  Google Scholar 

  8. XIANG Zhi-dong, CHEN Tao, LI Zhong-ming, et al. Negative temperature coefficient of resistivity in lightweight conductive carbon nanotube/polymer composites [J]. Macromolecular Materials and Engineering, 2009, 294(2): 91–95. DOI: https://doi.org/10.1002/mame.200800273.

    Article  Google Scholar 

  9. LUO Hong-sheng, LI Zhi-wei, YI Guo-bin, et al. Temperature sensing of conductive shape memory polymer composites [J]. Materials Letters, 2015, 140: 71–74. DOI: https://doi.org/10.1016/j.matlet.2014.11.010.

    Article  Google Scholar 

  10. LU Xin, XU Gu, HOFSTRA P G, et al. Moisture-absorption, dielectric relaxation, and thermal conductivity studies of polymer composites [J]. Journal of Polymer Science Part B: Polymer Physics, 1998, 36(13): 2259–2265. DOI: https://doi.org/10.1002/(SICI)1099-0488(19980930)36:13<2259:AID-POLB2>3.0.CO;2-O.

    Article  Google Scholar 

  11. GURLER M T, CRABB C C, DAHLIN D M, et al. Effect of bead movement rules on the relaxation of cubic lattice models of polymer chains [J]. Macromolecules, 1983, 16(3): 398–403. DOI: https://doi.org/10.1021/ma00237a012.

    Article  Google Scholar 

  12. WALLACE W E, FISCHER D A, EFIMENKO K, et al. Polymer chain relaxation: Surface outpaces bulk [J]. Macromolecules, 2001, 34(15): 5081–5082. DOI: https://doi.org/10.1021/ma002075t.

    Article  Google Scholar 

  13. ELLEUCH R, TAKTAK W. Viscoelastic behavior of HDPE polymer using tensile and compressive loading [J]. Journal of Materials Engineering and Performance, 2006, 15(1): 111–116. DOI:https://doi.org/10.1361/105994906x83475.

    Article  Google Scholar 

  14. BHATTACHARYA S, TANDON R P, SACHDEV V K. Electrical conduction of graphite filled high density polyethylene composites; experiment and theory [J]. Journal of Materials Science, 2009, 44(9): 2430–2433. DOI: https://doi.org/10.1007/s10853-009-3387-x.

    Article  Google Scholar 

  15. DENG H, ZHANG R, BILOTTI E, et al. Conductive polymer tape containing highly oriented carbon nanofillers [J]. Journal of Applied Polymer Science, 2009, 113(2): 742–751. DOI: https://doi.org/10.1002/app.29624.

    Article  Google Scholar 

  16. DONG Shuai, WANG Xiao-jie. Alignment of carbon iron into polydimethylsiloxane to create conductive composite with low percolation threshold and high piezoresistivity: Experiment and simulation [J]. Smart Materials and Structures, 2017, 26(4): 045027. DOI: https://doi.org/10.1088/1361-665x/aa62d2.

    Article  MathSciNet  Google Scholar 

  17. PELÍŠKOVÁ M, VILČÁKOVÁ J, OMASTOVÁ M, et al. The effect of pressure deformation on dielectric and conducting properties of silicone rubber/polypyrrole composites in the percolation threshold region [J]. Smart Materials and Structures, 2005, 14(5): 949–952. DOI: https://doi.org/10.1088/0964-1726/14/5/032.

    Article  Google Scholar 

  18. HUANG J C. Carbon black filled conducting polymers and polymer blends [J]. Advances in Polymer Technology, 2002, 21(4): 299–313. DOI: https://doi.org/10.1002/adv.10025.

    Article  Google Scholar 

  19. TOSAKA M, KOHJIYA S, IKEDA Y, et al. Molecular orientation and stress relaxation during strain-induced crystallization of vulcanized natural rubber [J]. Polymer Journal, 2010, 42(6): 474–481. DOI: https://doi.org/10.1038/pj.2010.22.

    Article  Google Scholar 

  20. BURLATSKY S F, DEUTCH J M. Transient relaxation of a charged polymer chain subject to an external field in a random tube [J]. The Journal of Chemical Physics, 1998, 109(6): 2572–2578. DOI: https://doi.org/10.1063/1.476831.

    Article  Google Scholar 

  21. LI Jun-rong, WANG Jun, XU Jia-rui, et al. Structure evolution of conductive polymer composites revealed by solvent vapor induced time-dependent percolation [J]. Composites Science and Technology, 2006, 66(16): 3126–3131. DOI: https://doi.org/10.1016/j.compscitech.2005.01.015.

    Article  Google Scholar 

  22. JEONG S, BAIG C. Molecular process of stress relaxation for sheared polymer melts [J]. Polymer, 2020, 202: 122683. DOI: https://doi.org/10.1016/j.polymer.2020.122683.

    Article  Google Scholar 

  23. CHENAL J M, CHAZEAU L, GUY L, et al. Molecular weight between physical entanglements in natural rubber: A critical parameter during strain-induced crystallization [J]. Polymer, 2007, 48(4): 1042–1046. DOI: https://doi.org/10.1016/j.polymer.2006.12.031.

    Article  Google Scholar 

  24. LAZOPOULOS K A, KARAOULANIS D, LAZOPOULOS A K. On fractional modelling of viscoelastic mechanical systems [J]. Mechanics Research Communications, 2016, 78: 1–5. DOI: https://doi.org/10.1016/j.mechrescom.2016.10.002.

    Article  Google Scholar 

  25. RAJAGOPAL K R. A note on a reappraisal and generalization of the Kelvin-Voigt model [J]. Mechanics Research Communications, 2009, 36(2): 232–235. DOI: https://doi.org/10.1016/j.mechrescom.2008.09.005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-zhuang Cui  (崔新壮).

Additional information

Foundation item

Project(2018YFB1600100) supported by the National Key Research and Development Project of China; Projects (51778346, 52027813) supported by the National Natural Science Foundation of China; Project(2019GSF111007) supported by the Key Research and Development Project of Shandong Province, China

Contributors

CUI Xin-zhuang provided the concept and reviewed the draft of manuscript. LI Jun wrote the first draft of manuscript and revised the final version. QI Hui and ZHANG Xiao-ning analyzed the measured data. LI Xiang-yang and BAO Zhen-hao draw the figures of manuscript. WANG Yi-lin replied to reviewers’ comments.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Xz., Li, J., Qi, H. et al. Viscoelastic behavior with damage evolution of a new smart geosynthetic in service temperature range. J. Cent. South Univ. 29, 1250–1261 (2022). https://doi.org/10.1007/s11771-022-5011-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5011-z

Key words

关键词

Navigation